洛谷P4099 [HEOI2013]SAO(树形dp)
HEOI的题好珂怕啊(各种意义上)
然后考虑树形dp,以大于为例
设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关)
我们考虑如果从当前子树中弄出$k$个节点,其他子树中弄出$j-1$个节点,那么当前节点的大小排名就是$k+j$
然后考虑一下,如果我们不看这个子树,根节点排在第$j$个,方案数是$f[i][j]$,如果只看此子树,此子树的根就是根节点的儿子,它在此子树中的排名可能是$1,2,...k$,那么我们就需要记录一下前缀和
然后考虑合并排列
对于小于根节点的,选出$j-1$个非此子树,对于大于根节点的,选出$sum[x]-1$个非此子树里弄出来的,那么就是一个组合问题了
ps:因为dp的时候会有4个1e9相乘所以要模四次
然后上我这个卡常卡到丧心病狂的代码
// luogu-judger-enable-o2
//minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
inline int getop(){
char ch;while((ch=getc())!='<'&&ch!='>');return ch=='<'?:-;
}
void print(int x){
if(x>=) print(x / );
putchar(''+x%);
}
const int N=,mod=1e9+;
int n,tot;ll tmp[N];
int f[N][N],g[N][N],c[N][N];
int head[N],ver[N<<],Next[N<<],sum[N],edge[N<<];
inline void init(){
c[][]=;
for(int i=;i<=;++i){
c[i][]=;
for(int j=;j<=i;++j)
c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
}
inline void clear(){
memset(head,,sizeof(head));
tot=;
}
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
}
void dfs(int u,int fa){
memset(g[u],,sizeof(g[u])),memset(f[u],,sizeof(f[u]));
g[u][]=f[u][]=sum[u]=;
for(int i=head[u];i;i=Next[i]){
int v=ver[i],e=edge[i];
if(v==fa) continue;
dfs(v,u);
memset(tmp,,sizeof(tmp));
for(int j=;j<=sum[u];++j)
for(int k=;k<=sum[v];++k){
if(~e)
tmp[j+k]+=1ll*f[u][j]*g[v][k]%mod
*c[j+k-][j-]%mod*c[sum[u]+sum[v]-j-k][sum[u]-j]%mod;
else tmp[j+k]+=1ll*f[u][j]*(g[v][sum[v]]-g[v][k]+mod)%mod
*c[j+k-][j-]%mod*c[sum[u]+sum[v]-j-k][sum[u]-j]%mod;
}
sum[u]+=sum[v];
for(int j=;j<=sum[u];++j)
f[u][j]=tmp[j]%mod,g[u][j]=(g[u][j-]+f[u][j])%mod;
}
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();init();
while(T--){
clear();n=read();
for(int i=,u,v,e;i<n;++i){
u=read(),e=getop(),v=read();
add(u,v,e),add(v,u,-e);
}
dfs(,-);
print(g[][sum[]]),putchar();
}
return ;
}
洛谷P4099 [HEOI2013]SAO(树形dp)的更多相关文章
- 洛谷 4099 [HEOI2013]SAO——树形DP
题目:https://www.luogu.org/problemnew/show/P4099 结果还是看了题解才会…… 关键是状态,f[ i ][ j ] 表示 i 子树. i 号点是第 j 个出现的 ...
- 洛谷 P4099 - [HEOI2013]SAO(树形 dp)
题面传送门 题意: 有一个有向图 \(G\),其基图是一棵树 求它拓扑序的个数 \(\bmod (10^9+7)\) \(n \in [1,1000]\) 如果你按照拓扑排序的方法来做,那恐怕你已经想 ...
- 洛谷$P4099\ [HEOI2013]\ SAO\ dp$
正解:树形$dp$ 解题报告: 传送门$QwQ$. 考虑设$f_i$表示点$i$的子树内的拓扑序排列方案数有多少个. 发现这样不好合并儿子节点和父亲节点.于是加一维,设$f_{i,j}$表示点$i$的 ...
- [BZOJ3167][P4099][HEOI2013]SAO(树形DP)
题目描述 Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 ...
- 3167: [Heoi2013]Sao [树形DP]
3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点 ...
- C++ 洛谷 2014 选课 from_树形DP
洛谷 2014 选课 没学树形DP的,看一下. 首先要学会多叉树转二叉树. 树有很多种,二叉树是一种人人喜欢的数据结构,简单而且规则.但一般来说,树形动规的题目很少出现二叉树,因此将多叉树转成二叉树就 ...
- $loj10156/$洛谷$2016$ 战略游戏 树形$DP$
洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...
- [洛谷P2016] 战略游戏 (树形dp)
战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...
- 洛谷P2607 [ZJOI2008]骑士(树形dp)
题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...
随机推荐
- oracle ORA-12514: TNS:listener does not currently know of service requested in connect descriptor
ORA-12514: TNS:listener does not currently know of service requested in connect descriptor 1.看看是不是监听 ...
- 吴恩达机器学习笔记(十一) —— Large Scale Machine Learning
主要内容: 一.Batch gradient descent 二.Stochastic gradient descent 三.Mini-batch gradient descent 四.Online ...
- join()方法作用
当在主线程当中执行到t1.join()方法时,就认为主线程应该把执行权让给t1 废话不多说看代码: package com.toov5.thread; public class JoinThreadT ...
- enable nested VT in VM
问题描述: 处理器支持VT-x,并且已经在BIOS中开启了VT-x.在host os上用VMware Workstation安装了一个Ubuntu虚拟机,在虚拟机中执行“cat /proc/cpuin ...
- 关于在linux python源文件头部添加 “#!/usr/bin/env python” 不能直接运行的问题
如果环境变量设置正确 如果文件是从windows拷贝到linux中的 可能是换行符造成的.试试dos2unix命令,或相似的命令,把dos格式的换行符转为unix格式.
- HihoCoder1677 : 翻转字符串(Splay)(区间翻转)
描述 给定一个字符串S,小Hi希望对S进行K次翻转操作. 每次翻转小Hi会指定两个整数Li和Ri,表示要将S[Li..Ri]进行翻转.(S下标从0开始,即S[0]是第一个字母) 例如对于S=" ...
- <<Senium2自动化测试>>读书笔记二
为进一步加强Python知识扩展和学习,在朋友的推荐下选择了<<Selenium2自动化测试实战>>,作者胡志恒,基于Python语言实现,以实例的方式详细讲解WebDrive ...
- python 之gc(回收机制)--garbage collection(GC垃圾回收)
######################引用计数######################### 引用计数:python 当中一种用来解决垃圾回收的策略之一 char 1个字节(2**8) in ...
- hdu3501Calculation 2——欧拉函数模板
题目: Problem Description Given a positive integer N, your task is to calculate the sum of the positiv ...
- navicat 关于orcale新建表空间,用户和权限分配
图文教程,直观, 上面连接数据库 下面创建表空间 建表空间的设置 表空间名的设置 新建用户 填写用户名,选择默认表空间 成员属性德设置,这里因为是自己用,所以选择最大权限,其他的权限这是需要专业的了 ...