传送门

HEOI的题好珂怕啊(各种意义上)

然后考虑树形dp,以大于为例

设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关)

我们考虑如果从当前子树中弄出$k$个节点,其他子树中弄出$j-1$个节点,那么当前节点的大小排名就是$k+j$

然后考虑一下,如果我们不看这个子树,根节点排在第$j$个,方案数是$f[i][j]$,如果只看此子树,此子树的根就是根节点的儿子,它在此子树中的排名可能是$1,2,...k$,那么我们就需要记录一下前缀和

然后考虑合并排列

对于小于根节点的,选出$j-1$个非此子树,对于大于根节点的,选出$sum[x]-1$个非此子树里弄出来的,那么就是一个组合问题了

ps:因为dp的时候会有4个1e9相乘所以要模四次

然后上我这个卡常卡到丧心病狂的代码

 // luogu-judger-enable-o2
//minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
inline int getop(){
char ch;while((ch=getc())!='<'&&ch!='>');return ch=='<'?:-;
}
void print(int x){
if(x>=) print(x / );
putchar(''+x%);
}
const int N=,mod=1e9+;
int n,tot;ll tmp[N];
int f[N][N],g[N][N],c[N][N];
int head[N],ver[N<<],Next[N<<],sum[N],edge[N<<];
inline void init(){
c[][]=;
for(int i=;i<=;++i){
c[i][]=;
for(int j=;j<=i;++j)
c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
}
inline void clear(){
memset(head,,sizeof(head));
tot=;
}
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
}
void dfs(int u,int fa){
memset(g[u],,sizeof(g[u])),memset(f[u],,sizeof(f[u]));
g[u][]=f[u][]=sum[u]=;
for(int i=head[u];i;i=Next[i]){
int v=ver[i],e=edge[i];
if(v==fa) continue;
dfs(v,u);
memset(tmp,,sizeof(tmp));
for(int j=;j<=sum[u];++j)
for(int k=;k<=sum[v];++k){
if(~e)
tmp[j+k]+=1ll*f[u][j]*g[v][k]%mod
*c[j+k-][j-]%mod*c[sum[u]+sum[v]-j-k][sum[u]-j]%mod;
else tmp[j+k]+=1ll*f[u][j]*(g[v][sum[v]]-g[v][k]+mod)%mod
*c[j+k-][j-]%mod*c[sum[u]+sum[v]-j-k][sum[u]-j]%mod;
}
sum[u]+=sum[v];
for(int j=;j<=sum[u];++j)
f[u][j]=tmp[j]%mod,g[u][j]=(g[u][j-]+f[u][j])%mod;
}
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();init();
while(T--){
clear();n=read();
for(int i=,u,v,e;i<n;++i){
u=read(),e=getop(),v=read();
add(u,v,e),add(v,u,-e);
}
dfs(,-);
print(g[][sum[]]),putchar();
}
return ;
}

洛谷P4099 [HEOI2013]SAO(树形dp)的更多相关文章

  1. 洛谷 4099 [HEOI2013]SAO——树形DP

    题目:https://www.luogu.org/problemnew/show/P4099 结果还是看了题解才会…… 关键是状态,f[ i ][ j ] 表示 i 子树. i 号点是第 j 个出现的 ...

  2. 洛谷 P4099 - [HEOI2013]SAO(树形 dp)

    题面传送门 题意: 有一个有向图 \(G\),其基图是一棵树 求它拓扑序的个数 \(\bmod (10^9+7)\) \(n \in [1,1000]\) 如果你按照拓扑排序的方法来做,那恐怕你已经想 ...

  3. 洛谷$P4099\ [HEOI2013]\ SAO\ dp$

    正解:树形$dp$ 解题报告: 传送门$QwQ$. 考虑设$f_i$表示点$i$的子树内的拓扑序排列方案数有多少个. 发现这样不好合并儿子节点和父亲节点.于是加一维,设$f_{i,j}$表示点$i$的 ...

  4. [BZOJ3167][P4099][HEOI2013]SAO(树形DP)

    题目描述 Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 ...

  5. 3167: [Heoi2013]Sao [树形DP]

    3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点 ...

  6. C++ 洛谷 2014 选课 from_树形DP

    洛谷 2014 选课 没学树形DP的,看一下. 首先要学会多叉树转二叉树. 树有很多种,二叉树是一种人人喜欢的数据结构,简单而且规则.但一般来说,树形动规的题目很少出现二叉树,因此将多叉树转成二叉树就 ...

  7. $loj10156/$洛谷$2016$ 战略游戏 树形$DP$

    洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...

  8. [洛谷P2016] 战略游戏 (树形dp)

    战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...

  9. 洛谷P2607 [ZJOI2008]骑士(树形dp)

    题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...

随机推荐

  1. SPDIF接口细则详解

    链接:https://max.book118.com/html/2017/0422/101658483.shtm

  2. Unity中几种简单的相机跟随

    #unity中相机追随 固定相机跟随,这种相机有一个参考对象,它会保持与该参考对象固定的位置,跟随改参考对象发生移动 using UnityEngine; using System.Collectio ...

  3. mac 在 finder 当前 路径下 打开 terminal 的办法

    1. 在:系统偏好设置 -> 键盘 -> 服务 或者 finder -> 服务偏好设置, 如下: 建议配合快捷键使用,本人使用的快捷键: 在 terminal 新建标签 contro ...

  4. java多线程系列 JUC锁01 框架

    转载 http://www.cnblogs.com/skywang12345/p/3496098.html 参考 https://www.cnblogs.com/leesf456/p/5453091. ...

  5. wamp server 安装后 Apache80端口占用

    提示:Your port 80 is actually used by :Server: Microsoft-HTTPAPI/2.0 解决方案:计算机->右键管理->服务和应用程序-> ...

  6. 51Nod 1084 矩阵取数问题 V2 —— 最小费用最大流 or 多线程DP

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1084 1084 矩阵取数问题 V2  基准时间限制:2 秒 空 ...

  7. 算法(Algorithms)第4版 练习 1.3.11

    主要思路: 这个和Dijkstrad的双栈算法不太一样,后缀的计算只需要一个栈即可. 用一个栈来存数字栈即可. 遇到数字,压栈. 遇到运算法,从栈中弹出相应的数字,用该运算法计算得到结果. 再次压入栈 ...

  8. EOF的使用

    1.我疑惑了 char a[20]; while(scanf("%s",a)!=EOF){ cout<<"hello"<<endl; } ...

  9. 几个重要的 ASM Disk Groups 参数

    几个重要的Disk group 属性: 1. ACCESS_CONTROL.ENABLED该属性用来控制某个disk group 上ASM FILE Access Control. 该参数有2个值:t ...

  10. Restore Points 制定回退方案

    Restore Points 制定回退方案 背景:Flashback Database 和 restore points 都可以提供一个基于时间点的回滚. 理论:1) Normal Restore P ...