2016-2017 ACM-ICPC, NEERC, Southern Subregional Contest A. Toda 2 贪心 + 暴力
2 seconds
512 megabytes
standard input
standard output
A group of n friends enjoys playing popular video game Toda 2. There is a rating system describing skill level of each player, initially the rating of the i-th friend is ri.
The friends decided to take part in the championship as a team. But they should have equal ratings to be allowed to compose a single team consisting of all n friends. So the friends are faced with the problem: how to make all their ratings equal.
One way to change ratings is to willingly lose in some matches. Friends can form a party consisting of two to five(but not more than n) friends and play a match in the game. When the party loses, the rating of each of its members decreases by 1. A rating can't become negative, so ri = 0 doesn't change after losing.
The friends can take part in multiple matches, each time making a party from any subset of friends (but remember about constraints on party size: from 2 to 5 members).
The friends want to make their ratings equal but as high as possible.
Help the friends develop a strategy of losing the matches so that all their ratings become equal and the resulting rating is maximum possible.
The first line contains a single integer n (2 ≤ n ≤ 100) — the number of friends.
The second line contains n non-negative integers r1, r2, ..., rn (0 ≤ ri ≤ 100), where ri is the initial rating of the i-th friend.
In the first line, print a single integer R — the final rating of each of the friends.
In the second line, print integer t — the number of matches the friends have to play. Each of the following t lines should contain n characters '0' or '1', where the j-th character of the i-th line is equal to:
- '0', if friend j should not play in match i,
- '1', if friend j should play in match i.
Each line should contain between two and five characters '1', inclusive.
The value t should not exceed 104, it is guaranteed that such solution exists.
Remember that you shouldn't minimize the value t, but you should maximize R. If there are multiple solutions, print any of them.
5
4 5 1 7 4
1
8
01010
00011
01010
10010
00011
11000
00011
11000
2
1 2
0
2
11
11
3
1 1 1
1
0
http://codeforces.com/contest/730/problem/0
题目给定n个数字,要求他们相等,并且每次只能选取【2, 5】个人出来减去1,问最后剩下的最大数字和方案是什么。
首先这题我没有用二分答案,因为注意到。
1、剩下的数字是相同的,因此每次选出最小的数字作为基准。
2、如果所有数字相同,则可以跳出循环了。
3、如果大于最小数字的个数是[2,5]个之间,而且,他们都是比最小数字大1的话,则可以使这些数字全部减去1.
因为如果除了最小数字,剩下的数字中全部都是mi + 1的话,你的决策不会影响到后面。因为大家的数字都相同嘛。如果不同,那就不行了。可能会导致(就是样例1,模拟一下就好)后面的每次只有1个数字要减,这不在【2, 5】的范围。
4、除了上面那些外,我们用贪心,每次只选出最大的两个数字去减1。选取两个,是因为他至少要两个,而且这样选,不会让本来就小的数字被减了,后面的每次只有1个数字要减
还有就是,方案是必定存在的而且在1e4之内
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
const int maxn = + ;
int ans[maxn * maxn][maxn];
void work() {
int n;
cin >> n;
int r[maxn];
for (int i = ; i <= n; ++i) cin >> r[i];
// cout << "ff" << endl;
int toans = ;
while (true) {
int cnt = ;
int flagCnt = ;
int mi = inf;
for (int i = ; i <= n; ++i) mi = min(mi, r[i]);
for (int i = ; i <= n; ++i) {
if (r[i] - mi >= ) flagCnt = ;
if (r[i] != mi) cnt++;
}
if (cnt == ) break;
++toans;
// cout << cnt << endl;
if (cnt >= && cnt <= && !flagCnt) {
for (int i = ; i <= n; ++i) {
if (r[i] != mi) {
ans[toans][i] = ;
r[i]--;
}
}
} else {
int mx1 = -inf, posmx1 = -inf, mx2 = -inf, posmx2 = -inf;
for (int i = ; i <= n; ++i) {
if (mx1 < r[i]) {
mx2 = mx1; posmx2 = posmx1;
mx1 = r[i]; posmx1 = i;
} else if (mx2 < r[i]) {
mx2 = r[i];
posmx2 = i;
}
}
// cout << posmx1 << " " << posmx2 << endl;
ans[toans][posmx1] = ;
ans[toans][posmx2] = ;
r[posmx1] = max(, r[posmx1] - );
r[posmx2] = max(, r[posmx2] - );
}
// cout << "ff" << endl;
}
printf("%d\n", r[]);
printf("%d\n", toans);
for (int i = ; i <= toans; ++i) {
for (int j = ; j <= n; ++j) {
printf("%d", ans[i][j]);
}
printf("\n");
}
} int main() {
#ifdef local
freopen("data.txt","r",stdin);
#endif
work();
return ;
}
2016-2017 ACM-ICPC, NEERC, Southern Subregional Contest A. Toda 2 贪心 + 暴力的更多相关文章
- 2018-2019 ICPC, NEERC, Southern Subregional Contest
目录 2018-2019 ICPC, NEERC, Southern Subregional Contest (Codeforces 1070) A.Find a Number(BFS) C.Clou ...
- Codeforces 2018-2019 ICPC, NEERC, Southern Subregional Contest
2018-2019 ICPC, NEERC, Southern Subregional Contest 闲谈: 被操哥和男神带飞的一场ACM,第一把做了这么多题,荣幸成为7题队,虽然比赛的时候频频出锅 ...
- 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror) Solution
从这里开始 题目列表 瞎扯 Problem A Find a Number Problem B Berkomnadzor Problem C Cloud Computing Problem D Gar ...
- Codeforces1070 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred)总结
第一次打ACM比赛,和yyf两个人一起搞事情 感觉被两个学长队暴打的好惨啊 然后我一直做傻子题,yyf一直在切神仙题 然后放一波题解(部分) A. Find a Number LINK 题目大意 给你 ...
- codeforce1070 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred) 题解
秉承ACM团队合作的思想懒,这篇blog只有部分题解,剩余的请前往星感大神Star_Feel的blog食用(表示男神汉克斯更懒不屑于写我们分别代写了下...) C. Cloud Computing 扫 ...
- 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred)
A. Find a Number 找到一个树,可以被d整除,且数字和为s 记忆化搜索 static class S{ int mod,s; String str; public S(int mod, ...
- 2018.10.20 2018-2019 ICPC,NEERC,Southern Subregional Contest(Online Mirror, ACM-ICPC Rules)
i207M的“怕不是一个小时就要弃疗的flag”并没有生效,这次居然写到了最后,好评=.= 然而可能是退役前和i207M的最后一场比赛了TAT 不过打得真的好爽啊QAQ 最终结果: 看见那几个罚时没, ...
- 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred) Solution
A. Find a Number Solved By 2017212212083 题意:$找一个最小的n使得n % d == 0 并且 n 的每一位数字加起来之和为s$ 思路: 定义一个二元组$< ...
- 【*2000】【2018-2019 ICPC, NEERC, Southern Subregional Contest C 】Cloud Computing
[链接] 我是链接,点我呀:) [题意] [题解] 我们可以很容易知道区间的每个位置有哪些安排可以用. 显然 我们优先用那些花费的钱比较少的租用cpu方案. 但一个方案可供租用的cpu有限. 我们可以 ...
随机推荐
- selenium 经常用到的API
一.webdriver 属性及方法: 1.获取当前页面的 url driver.current_url 2 .获取窗口相关信息 get_window_position() 返回窗口x,y坐标 get_ ...
- Ice php配置
1) Removed the php extension directories and recompiled apache/PHP2) Rebooted the machine.3) I remov ...
- 设置可见GPU方式
只可见第一块GPU os.environ["CUDA_VISIBLE_DEVICES"] = "0"
- 洛谷 P5061 秘密任务 —— 二分图
题目:https://www.luogu.org/problemnew/show/P5061 首先,“配合默契”就是连边的意思: 但发现答案不好统计,因为有连边的两个点可以分在一组,也可以不分在一组: ...
- VMware vs openStack对比直观优势
openStack VS VMware直观优势:1.openStack设计架构开放.生态稳定 大型国际巨头公司支持及开发参与,功能版本迭代快,相对的VMware则是封闭的商业化系统.2.基于openS ...
- python3-----反射实例
#/usr/bin/env python # -*- coding:utf-8 -*- import sys,os class WebServer(object): def __init__(self ...
- (十四)hibernate逆向工程
一.hibernate逆向工程生成实体 介绍一个模型设计工具PowerDesigner,这个是j2ee开发必要的一个工具.一般在开发中先使用PowerDesigner 创建实体关系图即概念模型.建立了 ...
- Infoapth 使用拼写 并加载web part 在Infopath的页面上
<g_vml_:shape style="POSITION: absolute; WIDTH: 568px; HEIGHT: 1312px; TOP: 0px; LEFT: 0px&q ...
- ACM-ICPC2018北京网络赛 Saving Tang Monk II(bfs+优先队列)
题目1 : Saving Tang Monk II 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 <Journey to the West>(also < ...
- CSU - 1580 NCPC2014 Outing(树形依赖+分组背包)
Outing Input Output Sample Input 4 4 1 2 3 4 Sample Output 4 分组背包: for 所有的组k for v=V..0 for 所有的i属于组k ...