UVA 1151 Buy or Build (最小生成树)
先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点。正确性是基于一个贪心,
在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少。
边比较多,用prim求最小生成树,效果比Kruskal好,枚举套餐的时候在用Kruskal。
prim和dijkstra的区别在于点距离的定义。
#include<bits/stdc++.h>
using namespace std;
const int maxn = ;
int n,q; int C[];
vector<int> Buy[];
#define PB push_back int x[maxn],y[maxn];
#define squ(x) ((x)*(x)) int dist(int a,int b) { return squ(x[a]-x[b])+squ(y[a]-y[b]); } struct Edge
{
int u,v,w;
Edge(){}
Edge(int u,int v,int w):u(u),v(v),w(w){}
bool operator < (const Edge& x) const {
return w > x.w;
}
}edges[maxn]; bool EdgeLess(const Edge &x,const Edge &y) { return x.w < y.w; } int ecnt; int d[maxn];
bool done[maxn];
const int INF = 0x3f3f3f3f; int Prim()
{
fill(d,d+n,INF);
fill(done,done+n,);
ecnt = ;
priority_queue<Edge> q;
q.push(Edge(-,,)); // dummy edge
int tot = d[] = ;
while(q.size()){
Edge x = q.top(); q.pop();
if(done[x.v]) continue;
edges[ecnt++] = x;
tot += x.w;
done[x.v] = true;
for(int i = ; i < n; i++){
if(done[i]) continue;
int cost = dist(x.v,i);
if(d[i]>cost){
d[i] = cost;
q.push(Edge(x.v,i,cost));
}
}
}
return tot;
} int pa[maxn];
int Find(int x) { return x==pa[x]?x:pa[x]=Find(pa[x]); }
void Union(int a,int b,int &cnt)
{
int s1 = Find(a),s2 = Find(b);
if(s1 != s2){
pa[s1] = s2; cnt--;
}
} int Kruskal(int cnt)
{
if(!cnt) return ;
int ans = ;
for(int i = ; i < ecnt; i++){
Edge &e = edges[i];
int s1 = Find(e.u), s2 = Find(e.v);
if(s1 != s2) { ans += e.w; pa[s1] = s2; cnt--; if(!cnt) return ans; } }
return ans;
} int main()
{
//freopen("in.txt","r",stdin);
int T; scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&q);
for(int i = ; i < q; i++){
int t; scanf("%d%d",&t,C+i);
Buy[i].clear();
while(t--) {
int c; scanf("%d",&c);
Buy[i].PB(c-);
}
}
for(int i = ; i < n; i++){
scanf("%d%d",x+i,y+i);
}
int ans = Prim();
sort(edges+,edges+ecnt,EdgeLess); for(int mask = ,M = <<q; mask < M; mask++){
for(int i = ; i < n; i++) pa[i] = i;
int tot = ,cnt = n-; for(int i = ; i < q; i++){
if(mask&<<i){
tot += C[i];
for(int j = ; j < Buy[i].size(); j++) {
Union(Buy[i][],Buy[i][j],cnt);
}
}
} tot += Kruskal(cnt);
ans = min(ans,tot);
}
printf("%d\n",ans);
if(T) putchar('\n');
}
return ;
}
UVA 1151 Buy or Build (最小生成树)的更多相关文章
- UVa 1151 - Buy or Build(最小生成树)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1151 Buy or Build MST(最小生成树)
题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...
- UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)
题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...
- uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)
最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...
- UVa 1151 Buy or Build (最小生成树+二进制法暴力求解)
题意:给定n个点,你的任务是让它们都连通.你可以新建一些边,费用等于两点距离的平方(当然越小越好),另外还有几种“套餐”,可以购买,你购买的话,那么有些边就可以连接起来, 每个“套餐”,也是要花费的, ...
- UVa 1151 Buy or Build【最小生成树】
题意:给出n个点的坐标,现在需要让这n个点连通,可以直接在点与点之间连边,花费为两点之间欧几里得距离的平方,也可以选购套餐,套餐中所含的点是相互连通的 问最少的花费 首先想kruskal算法中,被加入 ...
- UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)
题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...
- UVA 1151 买还是建(最小生成树)
买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...
- UVA 1151二进制枚举子集 + 最小生成树
题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐(数 ...
随机推荐
- python之文件的读写(1)
真的崩溃,刚写完的笔记由于点错了,现在特么又要重新写了. 崩溃呀.......... 之前的废话就不再重复了,直接进入正题吧. 今天小R 学了一天的NP课程,但是python还是不能忘得,所以晚上又 ...
- jQuery 实现网页跳转或用命令打开指定网页!
Jquery实现网页跳转或用命令打开指定网页! location.href = "www.baidu.com"; location.href = "aa.aspx&quo ...
- 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数
https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...
- 201621123016 《Java程序设计》第十二周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 面向系统综合设计-图书馆管理系统或购物车 使用流与文件改造你的图书馆管理系统或购物车. 2.1 简述如何 ...
- 16-CoreData之多表关联(存储自定义数据模型)
多表关联 1.1-简介 什么是多表关联 在处理数据库的关系中,无非只有三种关系 一对一:一个老师只能在一个教室上课,不可能同时在两个教室上课 一对多:一个教室可以有多个学生,但一个学生只能在一个教室 ...
- unity sprite怎么获取切割后的图
学习了一段时间的unity,对里面的组件有一个大致的了解,但是具体操作来说还不是很熟悉,今天看了一片关于unity sprite怎么获取切割后的图的文章,感觉还不错. 假设有一张png/tga图集,导 ...
- 2016 Noip提高组
2557. [NOIP2016]天天爱跑步 ★★☆ 输入文件:runninga.in 输出文件:runninga.out 简单对比时间限制:2 s 内存限制:512 MB [题目描述] ...
- Maven - settings.xml里的offline节点的作用
场景 某天我在本地修改了某个子项目的代码,并进行了打包:mvn clean install -DskipTests,接着我运行父项目却发现自己刚刚的改动并没有生效,或者说,我刚刚打包好的子项目变回了打 ...
- 1-zookeeper基本原理和使用
1 分布式应用 1.1 分布式系统原理 在一个网络中,每台服务器上各跑一个应用,然后彼此连接起来就组成一套系统.比如提供完成的游戏服务,需要有认证应用,道具应用,积分应用,游戏主应用等,应用并非跑在一 ...
- 洛谷 P1053 篝火晚会
https://www.luogu.org/problemnew/show/P1053 错误记录:判-1的时候出了些问题(比如只判了图是否连通):数组没清空 #include<cstdio> ...