题意:

给出\(n(n \leq 10^5)\)个数字\(a_i(a_i \leq 10^5)\),从中选出\(3\)个数,使得这\(3\)个数两两互质或者两两不互质

分析:

可以说这是《训练指南》\(P_{105}\)上问题\(6\)的原题。

将\(n\)个数看成\(n\)个顶点,如果两数互质连一条白边,不互质连一条黑边。

那么我们要计数的就是单色三角形的个数。

从\(n\)个数中选\(3\)个数,一共有\(C_n^3\)种方案,正面不容易计算所以我们反面计算单色三角形的个数。

在一个非单色三角形中,恰好有两个顶点连接两条异色边。

而且有公共顶点的两条异色边对应一个非单色三角形。

假设与\(a_i\)互质的数字的个数为\(b_i\)(相当于连了\(b_i\)条白边),那么与\(a_i\)不互质的数字的个数为\(n-1-b_i\)(连了\(n-1-b_i\)条黑边)

每个非单色三角形被计算了两次,所以对应的个数为$ \frac {1} {2} \sum{b_i (n-1-b_i)}\(
最后单色三角形的个数就是\)C_n^3$减去非单色三角形的个数。

关于计算与\(a_i\)互质的数字的个数,根据莫比乌斯反演公式有 $ \sum{\mu(d) cnt_d, (d | a_i)} \(,其中\)cnt_d\(为\)d$的倍数的个数。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std; typedef long long LL;
const int maxn = 100000; int mu[maxn + 10], pcnt, prime[maxn];
bool vis[maxn + 10];
vector<int> factors[maxn + 10]; void preprocess() {
pcnt = 0;
mu[1] = 1;
for(int i = 2; i <= maxn; i++) {
if(!vis[i]) {
mu[i] = -1;
prime[pcnt++] = i;
}
for(int j = 0; j < pcnt && i * prime[j] <= maxn; j++) {
vis[i * prime[j]] = true;
if(i % prime[j] != 0) mu[i * prime[j]] = -mu[i];
else {
mu[i * prime[j]] = 0;
break;
}
}
} for(int i = 2; i <= maxn; i++) if(mu[i])
for(int j = i; j <= maxn; j += i) factors[j].push_back(i);
} int n, a[maxn + 10], cnt[maxn + 10]; int main()
{
preprocess(); int T; scanf("%d", &T);
while(T--) {
scanf("%d", &n); memset(cnt, 0, sizeof(cnt));
for(int i = 0; i < n; i++) {
scanf("%d", a + i);
for(int d : factors[a[i]]) cnt[d]++;
} LL ans = 0;
for(int i = 0; i < n; i++) {
LL coprime = n;
for(int d : factors[a[i]]) coprime += mu[d] * cnt[d];
if(a[i] == 1) coprime--;
ans += coprime * (n - 1 - coprime);
}
ans >>= 1;
LL tot = (LL)n * (n-1) * (n-2) / 6;
printf("%lld\n", tot - ans);
} return 0;
}

LA 7048 Coprime 莫比乌斯反演的更多相关文章

  1. nyoj CO-PRIME 莫比乌斯反演

    CO-PRIME 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 This problem is so easy! Can you solve it? You are ...

  2. 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演

    [题目]G. Coprime Arrays [题意]当含n个数字的数组的总gcd=1时认为这个数组互质.给定n和k,求所有sum(i),i=1~k,其中sum(i)为n个数字的数组,每个数字均< ...

  3. 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演,前缀和,差分

    Coprime Arrays CodeForces - 915G Let's call an array a of size n coprime iff gcd(a1, a2, ..., *a**n) ...

  4. CF915G Coprime Arrays (莫比乌斯反演)

    CF915G Coprime Arrays 题解 (看了好半天终于看懂了) 我们先对于每一个i想,那么 我们设 我们用莫比乌斯反演 有了这个式子,可比可以求出△ans呢?我们注意到,由于那个(i/d) ...

  5. Coprime (单色三角形+莫比乌斯反演(数论容斥))

    这道题,先说一下单色三角形吧,推荐一篇noip的论文<国家集训队2003论文集许智磊> 链接:https://wenku.baidu.com/view/e87725c52cc58bd631 ...

  6. CF915G Coprime Arrays 莫比乌斯反演、差分、前缀和

    传送门 差分是真心人类智慧--完全不会 这么经典的式子肯定考虑莫比乌斯反演,不难得到\(b_k = \sum\limits_{i=1}^k \mu(i) \lfloor\frac{k}{i} \rfl ...

  7. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. POI2007_zap 莫比乌斯反演

    题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...

  9. acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy

    GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatis ...

随机推荐

  1. AJPFX总结Java 类加载器

    顾名思义,类加载器(class loader)用来加载 Java 类到 Java 虚拟机中.一般来说,Java 虚拟机使用 Java 类的方式如下:Java 源程序(.java 文件)在经过 Java ...

  2. Spring事务的5种隔离级别

    概述:isolation设定事务的隔离级别,事务管理器根据它来控制另外一个事务可以看到本事务内的哪些数据. 定义的5个不同的事务隔离级别: DEFAULT:默认的隔离级别,使用数据库默认的事务隔离级别 ...

  3. for循环操作DOM缓存节点长度?

    不管是在网上,还是在翻看书籍的时候,都能看到在使用for循环操作DOM节点时要做数节点长度的缓存,以确保性能最优化! 这二种写法格式大致是下面这样的 /*节点集合*/ var domarr=docum ...

  4. 转:IOS程序之间的文件共享

    原文 System-Declared Uniform Type Identifiers One of the common tasks that an iOS developer has to do ...

  5. 织梦channel标签内调用子栏目内容

    文件:include\taglib\channel.lib.php 把代码 SELECT id,typename,typedir,isdefault,ispart,defaultname,nameru ...

  6. <Android Framework 之路>多线程

    多线程编程 JAVA多线程方式 1. 继承Thread线程,实现run方法 2. 实现Runnable接口 JAVA单继承性,当我们想将一个已经继承了其他类的子类放到Thread中时,单继承的局限就体 ...

  7. Nginx开启Gzip压缩提高页面加载速度

    本文转自http://www.veryhuo.com/a/view/51706.html,如有侵权,请及时联系转载人删除! 在实际运维中,为了提高web页面的访问加载速度,一般会把静态资源(比如js. ...

  8. Jenkins系列——使用SonarQube进行代码质量检查

    1.目标 之前已经写过一篇关于Jenkins和SonarQube的一篇博客<jenkins集成sonar>,本文在参考前文的基础上,做了详细的补充. 使用SonarQube进行代码质量检查 ...

  9. 转 winfrom如何通过http来进行通信,并且通过传递json格式的数据可接受json格式的数据

    string username = this.textBox1.Text; string password = this.textBox2.Text; string AA = HttpUtility. ...

  10. itextsharp-5.2.1-修正无法签名大文件问题

    PDF文件格式几乎是所有开发平台或者业务系统都热爱的一种文档格式. 目前有很多优秀的开源PDF组件和类库.主要平时是使用.NET和Java开发,所以比较偏好使用iText,当然,它本身就很强大.iTe ...