《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式
基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识。
《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式的更多相关文章
- 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式
写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...
- 《University Calculus》-chaper8-无穷序列和无穷级数-等比级数
前言:其实无穷序列和无穷级数和数列{an}以及我们接触微积分就给出的极限概念lim有着紧密的联系,它对于我们在具体的问题当中进行建模和数据分析有着非常重要的作用. 无穷序列: 最简单的一种说法,就是一 ...
- Tyvj-TOM的无穷序列
背景 蛟川书院模拟试题 描述 TOM有一个无穷序列中如下:110100100010000100000.....请你帮助TOM找出在这个无穷序列中指定位置上的数字 输入格式 第一行一个正整数N,表示询问 ...
- 《University Calculus》-chaper8-无穷序列和无穷级数-p级数
Q:定义p级数有如下形式,讨论p级数的敛散性.(p>o) 我们以p = 1作为分界点,因为实践表明这个分界点是最优区分度的.那么下面我们进行分情况讨论. 在这之前,我们有必要先引入一个检验敛散性 ...
- 《University Calculus》-chaper8-无穷序列和无穷级数-泰勒定理的证明
泰勒定理: 证明:
- 《University Calculus》-chaper8-无穷序列和无穷级数-比值审敛法
在分析等比级数的过程中,我们发现对于q<1的等比级数是收敛的,它表示级数每一项与它前一项的比值小于1,我们能否将这种方法推广起来用于一般级数的审敛呢? 从极限的定义出发:
- 《University Calculus》-chape5-积分法-积分的定义
这一章节讨论积分的定义以及微积分基本定理. 笔者先前在数学证明专栏中关于高斯定理的证明的开头,给出了一段关于微积分思想的概括,文中提到根据导数(微分)的定义,根据其逆定义来给出积分的定义和计算方法,这 ...
- 《University Calculus》-chaper13-向量场中的积分-线积分
线积分: 基于二重积分和三重积分的引入,我们对于线积分的引入过程将会轻车熟路. 对于一根不均匀密度的铜丝,我们如何求其总质量?如下图. 类似二重积分和三重积分的引入,我们首先基于实际问题给出黎曼和的形 ...
- 《University Calculus》-chaper13-多重积分-三重积分的引入
承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲 ...
随机推荐
- python文件操作汇总
1.创建文件 f = open(filename,'w+')
- sql server获取当前日期
SqlServer中得到当前日期(convert函数,getdate函数)函数GETDATE()的返回值在显示时只显示到秒.实际上,SQL Sever内部时间可以精确到毫秒级(确切地说,可以精确到3. ...
- 多重背包的入门题目HDU1171,2191,2844.
首先,什么叫多重背包呢? 大概意思就是:一个背包有V总容量,有N种物品,其价值分别为Val1,Val2--,Val3,体积对应的是Vol1,Vol2,--,Vol3,件数对应Num1,Num2--,N ...
- 关于 const 成员函数
成员函数如果是const意味着什么? 有两个流行概念:物理常量性和逻辑常量性. C++对常量性的定义采用的是物理常量性概念,即const 成员函数不可以更改对象内任何non-static成员变量.例如 ...
- Win32中GDI+应用(四)--- 位图的打开与显示
显示位图,你应该使用GDI+里面的Bitmap类或者Image类,这两个类都提供了方法从硬盘上的一个文件打开文件,创建相应的内存中的位图对象的工作.然后你可以使用Graphics类的DrawImage ...
- 设计模式之 State 状态模式
状态模式的核心在于 1. 状态的转换导致行为(Handle)的差异,比如人的状态是饿的时候,吃(Handle)的行为是2个馒头,人状态是不太饿的时候,吃(Handle)的行为是半个馒头 2. Stat ...
- javascript 不间断向左滚动图片
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 初试jQuery EasyUI
jQuery EasyUI jQuery EasyUI是一组基于jQuery的UI插件集合,而jQuery EasyUI的目标就是帮助web开发者更轻松的打造出功能丰富并且美观的UI界面.开发者不需要 ...
- 零售POS开发
零售POS系统是一款基于离线与在线两种模式的POS系统,能够将门店的销售数据及时准确的同步到企业服务器.离线模式操作更加快捷.稳定.高效:在线操作实时同步会员信息.查看库存.下载最新档案.公文公告等一 ...
- http与https差异
HTTPS和HTTP的区别: https协议需要到ca申请证书,一般免费证书很少,需要交费. http是超文本传输协议,信息是明文传输,https 则是具有安全性的ssl加密传输协议 http的连接很 ...