题目大意:一串项链由n个戒指组成,对于每个戒指,一共有M个点,R种颜色,且旋转后相同的戒指是相同的,然后一串项链又由N个戒指组成,同时要满足相邻的两个戒指不能相同,这串项链上某个位置插入了一个特殊的东西,且如果特殊的东西插入的地方不同,即使戒指都是相同的,这两串项链也是不同的,求一共有多少不同的爱之项链。

思路:首先可以求出一共有多少种不同的戒指,又由于有那个特殊的东西,相当于这串项链即使旋转后相同,但特殊的东西插入的位置也肯定是不同的,因此即不考虑旋转,只考虑相邻位置不同的爱之项链的方案数。

令ans表示有多少种不同的戒指。

然后这样就可以运用容斥原理。对于第i个戒指和第i+1个戒指相同,可以看成第i个限制,然后第n个限制即第n个戒指和第1个限制不同,那么即要求满足所有限制的方案数。令Si为满足第i个限制的方案数的集合,那么即求S1~Sn的交,也就是其补集的并,那么就是总方案数减去所有不满足任意一个限制数加上所有不满足任意二个限制数......

然后这个式子是怎样的呢,首先总方案数显然就是ans^n,然后不满足任意一个限制数即有两个相邻的相同,可以看成一条边连接的两个点相同,就是C(n,1)*ans^(n-1),以此类推,然后可以得到:sigma(0<=i<=n,(-1)^i*C(n,i)*ans^(n-i)),然后发现这就是二项式定理,就可以得到(ans-1)^n, 但真的就是这样吗?当i=n时,就会有一个Bug,用公式算得的答案是(-1)^n,然而n个限制均不满足时的情况即所有颜色都一样,有ans种,因此还要加上(n&1?1-m:m-1)才行。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define p 3214567
#define maxn 200020 int m,r,tot;
int prime[maxn],phi[maxn];
bool isprime[maxn];
long long n; int power(int a,long long k){
if (k==) return ;
if (k==) return a%p;
int x=power(a,k/),ans=1ll*x*x%p;
if (k&) ans=1ll*a*ans%p;
return ans;
} int fphi(int x){
int ans=x;
for (int i=;i*i<=x;i++)
if (x%i==){
ans=ans-ans/i;
while (x%i==) x/=i;
}
if (x!=) ans=ans-ans/x;
return ans;
} int main(){
scanf("%lld%d%d",&n,&m,&r);tot=,memset(isprime,,sizeof(isprime)),phi[]=;
for (int i=;i<maxn;i++){
if (isprime[i]) prime[++tot]=i,phi[i]=i-;
for (int j=;j<=tot && i*prime[j]<maxn;j++){
isprime[i*prime[j]]=;
if (i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
int ans=;
for (int i=;i*i<=m;i++)
if (m%i==){
ans=(ans+1ll*power(r,i)*fphi(m/i)%p)%p;
if (i*i!=m) ans=(ans+1ll*power(r,m/i)*phi[i]%p)%p;
}
ans=1LL*ans*power(m,p-)%p;
int t=(1ll*power(ans-,n)+(n&?-ans:ans-))%p;
printf("%d\n",(t+p)%p);
return ;
}

bzoj4330:JSOI2012 爱之项链的更多相关文章

  1. bzoj 4330: JSOI2012 爱之项链

    听说这题不公开.. 那就不贴题意了 首先要用burnside引理求出戒指的种数,那么对于一个顺时针旋转$k$个位置的置换就相当于连上一条$(i,(i+k)%R)$的边,每个环颜色必须相同 环的个数为$ ...

  2. 洛谷 P5233 - [JSOI2012]爱之项链(Polya 定理+递推)

    洛谷题面传送门 首先很明显题目暗示我们先求出符合条件的戒指数量,再计算出由这些戒指能够构成的项链的个数,因此考虑分别计算它们.首先是计算符合条件的戒指数量,题目中"可以通过旋转重合的戒指视作 ...

  3. BZOJ3202 [Sdoi2013]项链

    Problem E: [Sdoi2013]项链 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 427  Solved: 146[Submit][Sta ...

  4. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  5. bzoj3202:[Sdoi2013]项链

    思路:首先考虑如何求珠子个数,一个珠子由a,b,c三个数组成且属于区间[1,a],并满足gcd(a,b,c)=1.由于要求本质相同,对于a,b,c这样的一个无序的数列且满足gcd(a,b,c)=1,设 ...

  6. BZOJ1878[SDOI2009]HH的项链

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

  7. bzoj 3202: [Sdoi2013]项链

    Description 项链是人体的装饰品之一,是最早出现的首饰.项链除了具有装饰功能之外,有些项 链还具有特殊显示作用,如天主教徒的十字架链和佛教徒的念珠. 从古至今人们为了美化人体本身,也美 化环 ...

  8. BZOJ 1878: [SDOI2009]HH的项链

    1878: [SDOI2009]HH的项链 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3548  Solved: 1757[Submit][Statu ...

  9. ZZULI 1876: 蛤玮的项链 Hash + 二分

    Time Limit: 6 Sec  Memory Limit: 128 MBSubmit: 153  Solved: 11 SubmitStatusWeb Board Description 蛤玮向 ...

随机推荐

  1. HW2.2

    import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner i ...

  2. Fibonacci数列小程序

    Fibonacci数列小程序 问题分析:Fibonacci数列特征是前两项数均为1,从第三项起,前两项的和为第三项的数的数值用公式归纳起来为:f1=f2=1.f1=f1+f2.f2=f1+f2. 程序 ...

  3. Sublime Text 教程

    编辑器的选择(Editor Choices) 从初学编程到现在,我用过的编辑器有EditPlus.UltraEdit.Notepad++.Vim.TextMate和Sublime Text,如果让我从 ...

  4. JS多态

    面向对象语言有三大特征,前面介绍了封装和继承,那么JS作为一门面向对象语言,有多态么,又怎么实现多态呢? 我们先看看多态的概念: 多态:同一操作作用于不同的对象,可以有不同的解释,产生不同的执行结果. ...

  5. URAL 1992 CVS 链表

    不更改链表结构,只是添加节点,没有删除节点.通过记录和更改标记来模拟题意的插入和删除,复制 指针模拟链表: 预开指针,存在M[]中,可以提高效率 #include<functional> ...

  6. 查找无用代码Dead Code的一些心得

    博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:查找无用代码Dead Code的一些心得.

  7. Java实现堆排序

    import java.util.Scanner; /*堆是一种数据结构,类似于一棵完整的二叉树. * 思想:堆的根节点值最大(最小),将无序序列调整成一个堆,就能找出这个序列的最大值(最小值),将找 ...

  8. android的activity的跳转

    1.无参数的跳转 先在layout下建立一个factivity.xml,在里面添加2个Button按钮和一个TextView,并添加属性 , 然后建立以个sactivity.xml文件, 在src下建 ...

  9. 集合练习——Set部分

    我们知道list存储的是有序不唯一的元素. set存储的是无序唯一的元素. 那么下面看一个例子吧: package CollectionPart; import java.util.HashSet; ...

  10. CentOS7上安装Pycharm

    下载pycharm $ wget https://download.jetbrains.com/python/pycharm-professional-2016.1.2.tar.gz 解压 $ .ta ...