描述


http://poj.org/problem?id=2229

将一个数n分解为2的幂之和共有几种分法?

Sumsets
Time Limit: 2000MS   Memory Limit: 200000K
Total Submissions: 16207   Accepted: 6405

Description

Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:

1) 1+1+1+1+1+1+1

2) 1+1+1+1+1+2

3) 1+1+1+2+2

4) 1+1+1+4

5) 1+2+2+2

6) 1+2+4

Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).

Input

A single line with a single integer, N.

Output

The
number of ways to represent N as the indicated sum. Due to the
potential huge size of this number, print only last 9 digits (in base 10
representation).

Sample Input

7

Sample Output

6

Source

分析


对i讨论:

1.i是奇数:

  分成的序列中必有1,所以可将i分为1+(i-1),所以f[i]=f[i-1];

2.i是偶数:
  (1).分成的序列中有1:

    同奇数,f[i]=f[i-1];

  (2).分成的序列中没有1:

    序列中的所有数都是2的倍数,那么任一种序列中的各个数/2,就得到了i/2的序列,那这种情况下,i的序列数就和i/2的序列数相同即f[i]=f[i/2];

  综上:f[i]=f[i-1]+f[i/2];

 #include<cstdio>

 const int maxn=,mod=1e9;
int n,f[maxn]; int main()
{
#ifndef ONLINE_JUDGE
freopen("sum.in","r",stdin);
freopen("sum.out","w",stdout);
#endif
scanf("%d",&n);
f[]=;
for(int i=;i<=n;i++)
{
if(i&) f[i]=f[i-];
else f[i]=(f[i-]+f[i/])%mod;
}
printf("%d\n",f[n]);
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return ;
}

POJ_2229_Sumsets_(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. 什么是SysWow64

    转自 什么是SysWow64 Wow!什么是Wow64 64位的Windows并不是简单地把所有东西都编译成64位就万事大吉的.关于64位的CPU应该做成什么样子,Intel和AMD曾有各自的打算.A ...

  2. Spring 和 MyBatis 环境整合

    本案例主要是讲述Spring  和  MyBatis 的环境整合 , 对页面功能的实现并没有做的很完整 先附上本案例的结构 1 . 创建项目并导入相关jar包 commons-collections4 ...

  3. iOS-事务相关

    事务管理 事务(Transaction):1.构成单一逻辑工作单元的操作集合DBMS中的用户程序DBMS外的可执行程序对数据库的读/写操作序列2.读从数据库中读取数据,首先从磁盘中读到内存(Buffe ...

  4. c#md5与SHA1验证函数

    /// <summary> /// MD5验证函数 /// </summary> /// <param name="fileName">文件的路 ...

  5. ReactNative-----环境搭建二(android)

    一.初始化一个ReactNative项目 在指定目录运行命令:react-native init Vince(项目名称)  //其过程就是在使用CLI工具构建项目, 命令行代码 F:\React> ...

  6. 06_WebService与Socket的区别

    [区别] 区别1. Socket是基于TCP/IP的传输层协议. WebService是基于HTTP协议传输数据的,HTTP是基于TCP的应用层协议. 区别2. WebService采用了基于HTTP ...

  7. bzoj1008: [HNOI2008]越狱

    思路:首先所有情况就是m^n,然后不可能发生越狱的情况就是第一个有m种选择,第二个要与第一个不同就是m-1种选择,第三个要与第二个不同也是m-1种选择,然后不可能发生越狱的情况数就是m*(m-1)^( ...

  8. Linux下使用openvpn客户端

    安装 root 权限用户下 :yum install openvpn fedora23的yum可能会切换到dnf源上安装不必在意,等待就ok. 稍等片刻将自动安装好openvpn需要的软件包.安装完成 ...

  9. sql join 用法

    SQL JOIN 的用法   关于sql语句中的连接(join)关键字,是较为常用而又不太容易理解的关键字,下面这个例子给出了一个简单的解释 --建表table1,table2:create tabl ...

  10. xcode 自动添加注释,生成文档

    一.自动生成注释代码        添加一个快捷键,生成 注释代码        ThisService 下载连接:http://wafflesoftware.net/thisservice/     ...