Kafka简介

  Kafka是一个消息系统服务框架,它以提交日志的形式存储消息,并且消息的存储是分布式的,为了提供并行性和容错保障,消息的存储是分区冗余形式存在的。

Kafka的架构

  Kafka中包含以下几种专业术语:

  1. topic:Kafka中以topic的形式来保存不同类别的消息

  2. producer:Kafka中发布消息的称为producer

  3. consumer:Kafka中订阅topic的进程称为consumer

  4. broker:Kafka运行在由一个或多个服务(器)组成的集群上,每一个服务(器)称为一个broker。

  具体的架构如下:

  从架构图可以看出,producers通过网络将消息发布到Kafka上,然后消息以分区冗余的topic形式存储在分布式的Kafka服务集群上,最后consumers订阅不同的topic消息进行消费。其中客户端和服务器间是通过TCP协议进行通信。

topic(话题)

  topic是已经发布的消息的一个分类名称,Kafka以分区(partition)日志的形式存储topic,也就是说,每个topic会被分成不同的partition,不同partition的关系如下:

  每个分区都是有序的不可变的消息序列,这些消息序列以追加形式写到提交日志上去。我们可以看到,在每个分区内,每条消息都被分配了一个下标号(offset),这些有序的下标号用以在不同partiton中唯一确定消息的位置。

  消息在Kafka上的存储时间是可配置的,在配置时间范围内,消息是可以随时被消费,但是从消息发布时间开始计算,一旦配置的时间过了,为了腾出更多的空间,消息将会被丢弃。

  consumer是如何知道自己要消费的消息在那个位置呢?由于每个消息被赋予了在partition中的唯一下标,所以在每个consumer上只需要维护的消息在日志中的下标位置即可。consumer可以通过控制下标来读取不同的消息。consumer的这种轻量设计方便了consumer的扩展,某个consumer的去留不会影响集群。
 
  将日志分区的目的可以归纳如下:
  1. 日志分区可以避免太大的日志无法存储的问题,单个服务器上的容量有限。
  2. 以日志存储的topic这样可以拥有任意多的分区,从而不会对topic的大小有限制。
  3. 日志分区存储对后期的并行消费和消息的容错有很大的帮助。
 

topic的分布式存储和分布式的服务请求

  日志的分区被分布式存储到不同的server上,当然,为了容错,每个partition可以配置一个冗余的份数。对于每一个partition,多份冗余的partition所在的server中只能有一个为leader,其他的都是follower。在读写操作中,都由partition的leader去接受读写请求,而其他的follower被动的去复制leader来保证消息的一致性。这样在以后如果partition的leader的服务如果挂了,这些follower可以被选举为leader继续提供读写服务。集群中的每个server都同时承担着leader和follower的角色,所以在处理请求的负载上也相对均衡。
 

producer(消息生产者)

  producer将消息发布到它指定的topic中,并负责决定发布到topic的哪个分区。通常由round-robin的形式或者通过一些分区函数(基于消息中的一些key)来保证负载均衡。就像hadoop中的shuffle类似,所以第二种方式用的相对较多。 
 

consumer(消息消费者)

  传统的消息发布模式有两种:队列模式和订阅发布模式。队列模式中,consumer池中的consumer从server从读取消息,每条消息被一个consumer读取。订阅发布模式中每条消息被广播到所有的consumer。而Kafka综合了这两者,提供了一种consumer group(消费组)的概念。
  有了消费组的概念,每个consumer可以将自己标记为所属的组,这样,Kafka将会将消息传输到订阅组的一个consumer实例(可以是一个consumer进程或者一台跑有consumer服务的机器)上,注意,这里不是将消息传给订阅组的所有consumer实例。
  在这种消费组的概念下,如果每个消费组只有一个consumer实例,那和传统的订阅发布模式一样,如果所有的consumer都在一个组内,则和传统的队列模式一样。
  更常见的是,每个topic都有若干数量的consumer组,每个组都是一个逻辑上的“订阅者”,为了容错和更好的稳定性,每个组由若干consumer组成。这其实就是一个发布-订阅模式,只不过订阅者是个组而不是单个consumer。消息订阅组和Kafka集群的关系如下图:
  
  相比传统的消息系统,Kafka在消息有序性上的保障性更强。传统的消息系统在有序性和并发性上不能做到很好的互补兼容,传统的消息系统没有分区的概念,消息在队列中有序存储,但是在多个consumer消费消息时,虽然消息是顺序分发的,但是由于消息的异步传输,最后并不能保证有序性(不理解这句话),然而,如果只让一个consumer去消费消息,又失去了并发性。但是Kafka通过分区的概念解决了这个难题,在Kafka中,每个分区只可以被分发到一个消费组中的一个consumer,这样保证了消息消费的有序性,由于一个topic有多个分区,所以并发性上也有保证。注意:在一个消费组中的consumer数量不能超过分区的数量(不理解为什么?)。
还有一个要注意的,Kafka的有序性是指单个partition内的,并不是全局的有序性,但是这已经能满足多数应用的需求,如果要保证全局有序,则只能拥有一个partition。
 

Kafka消息系统的几点保障

  1. producer往指定topic的一个partition写消息时,消息被提交到partition中的顺序和producer发送的顺序严格一致。
  2. consumer实例看到的消息的顺序和其在partition中存储的顺序一致。
  3. 对于冗余数为N的topic,在不影响消息丢失的情况下,系统最多可以容忍N-1个服务失败。
 
 
 

【Kafka入门】Kafka入门第一篇:基础概念篇的更多相关文章

  1. DNA拷贝数变异CNV检测——基础概念篇

    DNA拷贝数变异CNV检测——基础概念篇   一.CNV 简介 拷贝数异常(copy number variations, CNVs)是属于基因组结构变异(structural variation), ...

  2. lua学习之基础概念篇

    基础概念 程序块 (chunk) 定义 lua 中的每一个源代码文件或在交互模式(Cmd)中输入的一行代码都称之为程序块 一个程序块就是一连串语句或者命令 lua 中连续的语句不需要分隔符,但为了可读 ...

  3. (数据科学学习手札102)Python+Dash快速web应用开发——基础概念篇

    本文示例代码与数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的新系列教程Python+Dash快 ...

  4. 函数响应式编程(FRP)从入门到”放弃”——基础概念篇

    前言 研究ReactiveCocoa一段时间了,是时候总结一下学到的一些知识了. 一.函数响应式编程 说道函数响应式编程,就不得不提到函数式编程,它们俩到底有什么关系呢?今天我们就详细的解析一下他们的 ...

  5. 干货 | 自适应大邻域搜索(Adaptive Large Neighborhood Search)入门到精通超详细解析-概念篇

    01 首先来区分几个概念 关于neighborhood serach,这里有好多种衍生和变种出来的胡里花俏的算法.大家在上网搜索的过程中可能看到什么Large Neighborhood Serach, ...

  6. 函数响应式编程(FRP)—基础概念篇

    原文出处:http://ios.jobbole.com/86815/. 一函数响应式编程 说到函数响应式编程,就不得不提到函数式编程,他们俩有什么关系呢?今天我们就详细的解析一下他们的关系. 现在下面 ...

  7. Win32多线程编程(1) — 基础概念篇

      内核对象的基本概念 Windows系统是非开源的,它提供给我们的接口是用户模式的,即User-Mode API.当我们调用某个API时,需要从用户模式切换到内核模式的I/O System Serv ...

  8. (一)github之基础概念篇

    1.github: 一项为开发者提供git仓库的托管服务, 开发者间共享代码的场所.github上公开的软件源代码全都由git进行管理. 2.git: 开发者将源代码存入名为git仓库的资料库中,而g ...

  9. http协议之基础概念篇(1)

    内容概述: 该篇主要内容概述 a.http相关术语解析 b.http的基本原理与工作流程 c.相关工具的使用(Wireshark) 作用介绍 绝大多数的web开发,都是构建在http协议之上的. HT ...

随机推荐

  1. Open CASCADE 基础类(Foundation Classes)

    1 介绍(Introduction) 1 如何使用Open CASCADE技术(OCCT)基础类. This manual explains how to use Open CASCADE Techn ...

  2. WPF中的一些常用类型转换

    1.string和Color的转换: //string转Color (Color)ColorConverter.ConvertFromString((string)str); //Color转stri ...

  3. Bootstrap优秀网站:乐窝网

    Bootstrap优秀网站:乐窝网 调用谷歌在线地图的API和Bootstrap工具包实现了租房和出租的一个平台. 佩服之极,09年跟一个哥们聊天时,他就提议过这方面的应用,终于看到有人实现了,祝贺. ...

  4. Objective-c开发中混合使用ARC

    首选“Compile Sources”的位置: 选中工程->TARGETS->相应的target然后选中右侧的“Build Phases”,向下就找到“Compile Sources”了. ...

  5. tomcat session思考

    最近在做统计服务器在线人数时,按照当前服务器session数量来实现,具体方法:实现HttpSessionListener接口来,每次sessionCreate的时候增加1,sessionDestro ...

  6. 虚拟机重复创建系统去除SID

    我们安装完的操作系统都会有一个SID,为了简化安装,现在大部分人会选择GHOST克隆安装,经过克隆后的系统SID是相同的,有时需要重新获取SID    以前WIN2003有修改SID的工具NEWSID ...

  7. [转载]MongoDB C# 驱动教程

    本教程基于C#驱动 v1.6.x . Api 文档见此处: http://api.mongodb.org/csharp/current/. 简介 本教程介绍由10gen支持的,用于MongoDB的C# ...

  8. 进程间通信(IPC) 简介

    IPC是进程间通信的简称.传统上该术语描述的是运行在某个操作系统之上的不同进程间消息传递的不同方式. 我们讨论分为四个领域: 消息传递(管道,FIFO,消息队列(system v消息队列,posix消 ...

  9. RAM云存储已经出现了,就是特别贵

    据说bat有这种全内存的服务器集群, RAM的问题是,容量上去了就会很费电,而且不方便做持久化,并且成本也不低,一般只能作为缓存.内存数据库,给bat.12306这种高富帅用 也有提供内存云存储的服务 ...

  10. Google的代码风格规范,各种语言都很全

    https://code.google.com/p/google-styleguide/