BZOJ2818: Gcd 欧拉函数求前缀和
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的
然后找到所有的素数,然后用欧拉函数求一下前缀和就行
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N = 1e7+;
const int INF=0x3f3f3f3f;
typedef unsigned long long ULL;
typedef long long LL;
bool check[N];
int phi[N],prime[N],tot,n;
LL sum[N];
int main(){
scanf("%d",&n);
phi[]=;tot=;
for(int i=;i<=n;++i){
if(!check[i]){
prime[++tot]=i;
phi[i]=i-;
}
for(int j=;j<=tot;++j){
if(i*prime[j]>n)break;
check[i*prime[j]]=true;
if(i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
for(int i=;i<=n;++i)
sum[i]=sum[i-]+phi[i];
LL ans=;
for(int i=;i<=tot;++i)
ans+=*sum[n/prime[i]]-;
printf("%lld\n",ans);
return ;
}
BZOJ2818: Gcd 欧拉函数求前缀和的更多相关文章
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- BZOJ2818: Gcd 欧拉函数
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]
题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
随机推荐
- Putty终端 模拟 远程登录 虚拟机Linux
1.虚拟机设置 虚拟机设置->网络适配器->选择Host-only:与主机共享一个私有网络 桥接.NAT.Host-only三种网络模式的说明: (1)桥接:表示在局域网内是一台真实的系统 ...
- Linux内核Radix Tree(二)
1. 并发技术 由于需要页高速缓存是全局的,各进程不停的访问,必须要考虑其并发性能,单纯的对一棵树使用锁导致的大量争用是不能满足速度需要的,Linux中是在遍历树的时候采用一种RCU技术,来实现同 ...
- PHP 向 MySql 中数据修改操作时,只对数字操作有效,非数字操作无效,怎么办?
问题描述: 用PHP向MySql数据库中修改数据,实现增删改(数据库能正确连接) 经测试,代码只能对数字进行正常的增删改操作,非数字操作无效 但要在课程名称中输入中文,应该如果修改呢? 存 ...
- Python设计模式——设计原则
1.单一职责原则:每个类都只有一个职责,修改一个类的理由只有一个 2.开放-封闭远程(OCP):开放是指可拓展性好,封闭是指一旦一个类写好了,就尽量不要修改里面的代码,通过拓展(继承,重写等)来使旧的 ...
- windows store app search contract
代码如下: html: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> ...
- 《深入理解计算机系统》C程序中常见的内存操作有关的典型编程错误
对C/C++程序员来说,内存管理是个不小的挑战,绝对值得慎之又慎,否则让由上万行代码构成的模块跑起来后才出现内存崩溃,是很让人痛苦的.因为崩溃的位置在时间和空间上,通常是在距真正的错误源一段距离之后才 ...
- python机器学习库
http://scikit-learn.org/stable/install.html
- 【重要版本】Firefly alpha beta v1.2.2 正式发布
原地址:http://bbs.gameres.com/thread_220175.html firefly 1.2.2 更新 更新内容: 功能添加 1.动态模块更新 2.部分b ...
- POJ 1275 Cashier Employment(差分约束)
http://poj.org/problem?id=1275 题意 : 一家24小时营业的超市,要雇出纳员,需要求出超市每天不同时段需要的出纳员数,午夜只需一小批,下午需要多些,希望雇最少的人,给出每 ...
- jsp include包含html页面产生的乱码问题
大家都知道在jsp中include的有两种方式,一种是<jsp:include page="">,另一种是<%@ include file="" ...