Why longest path problem doesn't have optimal substructure?
We all know that the shortest path problem has optimal substructure. The reasoning is like below:
Supppose we have a path p from node u to v, another node t lies on path p: u->t->v ("->" means a path).
We claim that u->t is also a shortest path from u to t, and t->v is a shortest path from t to v.
Proof: if there is another path from u to t that is shorter than u->t, we can simply replace u->t with this shorter path in the solution of u->v, resulting in a shorter path than u->v, contradicting the fact that u->v is a shortest path from u to v.
But why can't we apply similar reasoning to the longest path problem? It's because in the longest path problem there are some constraints imposed on the solution. Suppose u->v is a longest path from u->v, node t lies on it.
So it's like u->t->v. If there is a longer path from u to t than u->t, if we cut off u->t from u->v and paste in the longer path, this new solution may fail some of the restrictions, for example, it may contains a cycle, which is invalid.
Why longest path problem doesn't have optimal substructure?的更多相关文章
- Solve Longest Path Problem in linear time
We know that the longest path problem for general case belongs to the NP-hard category, so there is ...
- Eclipse 项目红色叹号:Build Path Problem
Description Resource Path Location TypeA cycle was detected in the build path of project 'shgl-categ ...
- Codefroces Educational Round 27 845G Shortest Path Problem?
Shortest Path Problem? You are given an undirected graph with weighted edges. The length of some pat ...
- 干货 | 列生成VRPTW子问题ESPPRC( Elementary shortest path problem with resource constraints)介绍附C++代码
00 前言 各位小伙伴大家好,相信大家已经看过前面column generation求解vehicle routing problems的过程详解.该问题中,子问题主要是找到一条reduced cos ...
- 以计算斐波那契数列为例说说动态规划算法(Dynamic Programming Algorithm Overlapping subproblems Optimal substructure Memoization Tabulation)
动态规划(Dynamic Programming)是求解决策过程(decision process)最优化的数学方法.它的名字和动态没有关系,是Richard Bellman为了唬人而取的. 动态规划 ...
- Dynamic Programming | Set 2 (Optimal Substructure Property)
正如我们在 Dynamic Programming | Set 1 (Overlapping Subproblems Property) 中讨论的那样,当一个问题具有以下2种性质时,建议使用动态规划来 ...
- [BFS,A*,k短路径] 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 path (Problem - 6705)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6705 path Time Limit: 2000/2000 MS (Java/Others) Mem ...
- poj3764 The XOR Longest Path【dfs】【Trie树】
The xor-longest Path Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10038 Accepted: ...
- 【CF edu 27 G. Shortest Path Problem?】
time limit per test 3 seconds memory limit per test 512 megabytes input standard input output standa ...
随机推荐
- iOS之正则表达式的使用
一.什么是正则表达式 正则表达式,又称正规表示法,是对字符串操作的一种逻辑公式.正则表达式可以检测给定的字符串是否符合我们定义的逻辑,也可以从字符串中获取我们想要的特定部分.它可以迅速地用极简单的方式 ...
- 关于IPv6
App在本地IPv6的测试环境下运行一切正常,结果又是被拒,悲剧原因还是IPv6的问题;求解决方法被拒原因We discovered one or more bugs in your app when ...
- Webstorm 不识别es6 import React from ‘react’——webstorm不支持jsx语法怎么办
2016-10-31更新 webstorm不支持es6语法怎么办? webstorm不支持jsx语法怎么办? 参考:webstorm不支持jsx语法怎么办 I spent ages trying to ...
- 你不知道的javascript 上卷 读书笔记
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- webrtc学习——RTCPeerConnection
The RTCPeerConnection interface represents a WebRTC connection and handles efficient streaming of da ...
- MD5/SHA加密
public class EncryptUtil { public static String getEncrypt(String value , String encrypt_type){ Stri ...
- 什么是NSTimer
本文主要是介绍什么是NSTimer,具体使用请参考上一篇博客. 1.什么是NSTimer? NSTimer就是timer就是一个能在从现在开始的后面的某一个时刻或者周期性的执行我们指定的方法的对象. ...
- struts2 I18n问题 国际化
java国际化 1.了解缺省Locale是由操作系统决定的,Locale是由语言和国家代码组成 2.国际化资源文件是由baseName+locale组成,如:MessageBundle_en_US.p ...
- 对REST的一些理解
昨天学习REST,发现有篇文章写的真心不错,看了一遍,并没有完全理解,将一些感觉比较重要的做个记录. 文章链接:REST简介 定义 Representational State Transfer ( ...
- Linux网络应用编程之Packet Tracer安装及界面介绍
Packet Tracer入门 一,Packet Tracer介绍 packet tracer 是由Cisco公司发布的一个辅助学习工具,为学习思科网络课程的初学者去设计.配置.排除网络故障提供了网络 ...