We all know that the shortest path problem has optimal substructure. The reasoning is like below:

Supppose we have a path p from node u to v, another node t lies on path p: u->t->v ("->" means a path).

We claim that u->t is also a shortest path from u to t, and t->v is a shortest path from t to v.

Proof: if there is another path from u to t that is shorter than u->t, we can simply replace u->t with this shorter path in the solution of u->v, resulting in a shorter path than u->v, contradicting the fact that u->v is a shortest path from u to v.

But why can't we apply similar reasoning to the longest path problem? It's because in the longest path problem there are some constraints imposed on the solution. Suppose u->v is a longest path from u->v, node t lies on it.

So it's like u->t->v. If there is a longer path from u to t than u->t, if we cut off u->t from u->v and paste in the longer path, this new solution may fail some of the restrictions, for example, it may contains a cycle, which is invalid.

Why longest path problem doesn't have optimal substructure?的更多相关文章

  1. Solve Longest Path Problem in linear time

    We know that the longest path problem for general case belongs to the NP-hard category, so there is ...

  2. Eclipse 项目红色叹号:Build Path Problem

    Description Resource Path Location TypeA cycle was detected in the build path of project 'shgl-categ ...

  3. Codefroces Educational Round 27 845G Shortest Path Problem?

    Shortest Path Problem? You are given an undirected graph with weighted edges. The length of some pat ...

  4. 干货 | 列生成VRPTW子问题ESPPRC( Elementary shortest path problem with resource constraints)介绍附C++代码

    00 前言 各位小伙伴大家好,相信大家已经看过前面column generation求解vehicle routing problems的过程详解.该问题中,子问题主要是找到一条reduced cos ...

  5. 以计算斐波那契数列为例说说动态规划算法(Dynamic Programming Algorithm Overlapping subproblems Optimal substructure Memoization Tabulation)

    动态规划(Dynamic Programming)是求解决策过程(decision process)最优化的数学方法.它的名字和动态没有关系,是Richard Bellman为了唬人而取的. 动态规划 ...

  6. Dynamic Programming | Set 2 (Optimal Substructure Property)

    正如我们在 Dynamic Programming | Set 1 (Overlapping Subproblems Property) 中讨论的那样,当一个问题具有以下2种性质时,建议使用动态规划来 ...

  7. [BFS,A*,k短路径] 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 path (Problem - 6705)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6705 path Time Limit: 2000/2000 MS (Java/Others)    Mem ...

  8. poj3764 The XOR Longest Path【dfs】【Trie树】

    The xor-longest Path Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10038   Accepted:  ...

  9. 【CF edu 27 G. Shortest Path Problem?】

    time limit per test 3 seconds memory limit per test 512 megabytes input standard input output standa ...

随机推荐

  1. Prepare a Nexus Maven private repository

    1. port nat mapping #ssh VBoxManage modifyvm "boot2docker-vm" --natpf1 "tcp-port_5002 ...

  2. maven项目在tomcat中运行遇到的问题

    在使用maven构建项目,并在tomcat容器中运行的时候遇到了一些问题,现做一下记录 maven项目中jdk版本会自动恢复 maven项目的编译jdk即使在window -> java -&g ...

  3. Oracle--常见Exception

    1.  错 误 名 称 错误代码    错 误 含 义 2.  CURSOR_ALREADY_OPEN ORA_06511   试图打开已经打开的游标 3.  INVALID_CURSOR  ORA_ ...

  4. Service层和DTO层的作用

    Service层主要提供的几个作用:1.将业务逻辑层进行封装,对外提供业务服务调用.2.通过外观模式,屏蔽业务逻辑内部方法.3.降低业务逻辑层与UI层的依赖,业务逻辑接口或实现的变化不会影像UI层.4 ...

  5. 20151217jqueryUI--自动补全工具

    自动补全(autocomplete),是一个可以减少用户输入完整信息的 UI 工具.一般在输入邮箱.搜索关键字等,然后提取出相应完整字符串供用户选择.一. 调用 autocomplete()方法 $( ...

  6. 利用SQL语句给字段加注释

    EXEC sys.sp_addextendedproperty @name=N'MS_Description', @value=N'角色Id',--注释名称 @level0type=N'SCHEMA' ...

  7. 关于bootstrap的datepicker在meteor应用中的使用(不包含bootstrap框架)

    1.安装bootstrap3-datepicker包 meteor add rajit:bootstrap3-datepicker 2.使用方法 Example In your handlebars ...

  8. selenium2.0处理case实例(一)

    通过自动化脚本, 判断下拉框选项值是否按照字母顺序(忽略大小写)显示 case场景如下: 1)打开www.test.com;2)判断下拉框选项是否按照字母顺序排列(忽略大小写)3)选择其中一个任意选项 ...

  9. Core Data(数据持久化)

    Core Data可能是OS X和iOS中最容易被误解的框架之一了.为了帮助大家理解,我们将快速研究Core Data,来看一下它是关于什么的.为了正确使用Core Data, 有必要理解其概念.几乎 ...

  10. 利用putty实现文件在linux上传和下载

    利用putty实现文件上传和下载:1.打开windows命令提示符窗口d:(putty在d盘下)cd putty(pscp.exe所在目录)2:上传(主要利用pscp程序)pscp d:/jdk-8u ...