UvaLive 6661 Equal Sum Sets (DFS)
Let us consider sets of positive integers less than or equal to n. Note that all elements of a set are different. Also note that the order of elements doesnt matter, that is, both {3, 5, 9} and {5, 9, 3} mean the same set.
Specifying the number of set elements and their sum to be k and s, respectively, sets satisfying the conditions are limited. When n = 9, k = 3 and s = 23, {6, 8, 9} is the only such set. There may be more than one such set, in general, however. When n = 9, k = 3 and s = 22, both {5, 8, 9} and {6, 7, 9} are possible.
You have to write a program that calculates the number of the sets that satisfy the given conditions.
Input
The input consists of multiple datasets. The number of datasets does not exceed 100. Each of the datasets has three integers n, k and s in one line, separated by a space. You may assume 1 ≤ n ≤ 20, 1 ≤ k ≤ 10 and 1 ≤ s ≤ 155. The end of the input is indicated by a line containing three zeros.
Output The output for each dataset should be a line containing a single integer that gives the number of the sets that satisfy the conditions. No other characters should appear in the output. You can assume that the number of sets does not exceed 231 − 1.
Sample Input
9 3 23
9 3 22
10 3 28
16 10 107
20 8 102
20 10 105
20 10 155
3 4 3
4 2 11
0 0 0
Sample Output
1
2
0
20
1542
5448
1
0
0
题意:
求从不超过 N 的正整数当中选取 K 个不同的数字,组成和为 S 的方法数。
1 <= N <= 20 1 <= K<= 10 1 <= S <= 155
AC代码
#include<iostream>
using namespace std;
int n,k,s,total;
void dfs(int x,int y,int z)
{
if(y==k&&z==s)
{
total++;
return;
}
for(int i=; i<=x-; i++)
{
if(z+i<=s)
dfs(i,y+,z+i);
}
}
int main()
{
while(cin>>n>>k>>s&&n&&k&&s)
{
total=;
dfs(n+,,);
cout<<total<<endl;
}
return ;
}
UvaLive 6661 Equal Sum Sets (DFS)的更多相关文章
- [UVALive 6661 Equal Sum Sets] (dfs 或 dp)
题意: 求从不超过 N 的正整数其中选取 K 个不同的数字,组成和为 S 的方法数. 1 <= N <= 20 1 <= K<= 10 1 <= S <= 15 ...
- UVALive 6661 Equal Sum Sets
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- D.6661 - Equal Sum Sets
Equal Sum Sets Let us consider sets of positive integers less than or equal to n. Note that all elem ...
- UvaLive6661 Equal Sum Sets dfs或dp
UvaLive6661 PDF题目 题意:让你用1~n中k个不同的数组成s,求有多少种组法. 题解: DFS或者DP或打表. 1.DFS 由于数据范围很小,直接dfs每种组法统计个数即可. //#pr ...
- Equal Sum Sets
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=49406 题意: 输入n,k,s,求在不小于n的数中找出k个不同的数 ...
- HDU-3280 Equal Sum Partitions
http://acm.hdu.edu.cn/showproblem.php?pid=3280 用了简单的枚举. Equal Sum Partitions Time Limit: 2000/1000 M ...
- 698. Partition to K Equal Sum Subsets
Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...
- HDU 3280 Equal Sum Partitions(二分查找)
Equal Sum Partitions Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- [LeetCode] 548. Split Array with Equal Sum 分割数组成和相同的子数组
Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies fol ...
随机推荐
- UVALive 5990 Array Diversit
题意:对于一个数列A,substring是一个连续子串,subsequence是其非连续子序列.对于一个数字序列,记它的diversity是它的最大元素减去最小元素的差.给出一个数字序列,求与它div ...
- jsp判断手机访问和电脑访问
<% //取用户操作系统信息 String agent = request.getHeader("User-Agent") == null ? "": r ...
- Craking the coding interview 面试题:完美随机洗牌
给定一个序列,随机打乱这个序列,新产生的序列和任意一个序列产生的可能性是一样的,就是所谓的完美随机洗牌. 看下面的运行结果: 上面第一列是原数列,下面一行是新产生的打乱的数列. 基本思想:如果n-1个 ...
- 分享一个linux和linux的文件传输【scp无密码传输】
很多时候,本地测试服务器想把文件传到线上服务器的时候,很多人都是通过登陆线上服务器ssh 传输,这样挺危险的,很多弊端....所以我找了下方法,发现scp挺好用的! 模拟环境: 192.168.147 ...
- Android 免费短信获取国家列表和国家代码
StringBuffer str = new StringBuffer(); for (Map.Entry<Character, ArrayList<String[]>> en ...
- 使用Listener准备application作用域数据
在程序中.有些数据我们希望在程序启动的时候就准备好,而且仅仅准备一次,放在application作用域中,这时候.我们一般会用Listener来准备这些数据. 可是,用Listener准备applic ...
- springMVC3学习(二)--ModelAndView对象
当控制器处理完请求时,一般会将包括视图名称或视图对象以及一些模型属性的ModelAndView对象返回到DispatcherServlet. 因此,常常须要在控制器中构造ModelAndView对象. ...
- Android之开发常用颜色
Android开发中常常要用一些个性化的颜色,然而茫茫的RBG颜色对照表,往往给人眼花缭乱的感觉,更别说从中轻易选出一两种比较满意的颜色,下面我就总结一下开发中常用到的比较绚丽的颜色,都是有名有姓的哦 ...
- 【Python之旅】第六篇(七):开发简易主机批量管理工具
[Python之旅]第六篇(七):开发简易主机批量管理工具 python 软件开发 Paramiko模块 批量主机管理 摘要: 通过前面对Paramiko模块的学习与使用,以及Python中多线程与多 ...
- xUtils3源码分析(一):view的绑定
概述 xUtils3是国人开发的一款功能丰富的Android快速开发框架,值得研究下.zip包下载:[ZIP]xutils主要分以下几个模块 视图绑定模块 网络请求模块 数据库模块 图片加载模块 我们 ...