Description

Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

  • Deletion: a letter in x is missing in y at a corresponding position.
  • Insertion: a letter in y is missing in x at a corresponding position.
  • Change: letters at corresponding positions are distinct

Certainly, we would like to minimize the number of all possible operations.

Illustration

A G T A A G T * A G G C
| | | | | | |
A G T * C * T G A C G C

Deletion: * in the bottom line Insertion: * in the top line Change: when the letters at the top and bottom are distinct

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

A  G  T  A  A  G  T  A  G  G  C
| | | | | | |
A G T C T G * A C G C

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where nm.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string x into a string y.

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string x into a string y.

Sample Input

10 AGTCTGACGC
11 AGTAAGTAGGC

Sample Output

4

关于最短编辑距离可以看一下我的蓝桥杯子栏中的文章,那里有些分析
这题我只是用来测试蓝桥杯里面的“DNA比对”这题,顺便水过的 - -
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int N = ;
int main()
{
int n1, n2;
char a[N], b[N];
while(cin >> n1 >> a >> n2 >> b)
{
int d1[N + ] = {}, d2[N + ] = {};
for(int i = ; i <= N; i++)
{
d1[i] = i;
} for(int i = ; i <= n1; i++) //a(0, i)
{
d2[] = i;
for(int j = ; j <= n2; j++) //b(0, j)
{
d2[j] = min(d2[j-] + , d1[j] + );
if(a[i - ] == b[j - ])
{
d2[j] = min(d2[j], d1[j-]);
}
else
{
d2[j] = min(d2[j], d1[j-] + );
}
}
for(int k = ; k <= N; k++)
{
d1[k] = d2[k];
}
}
cout << d2[n2] << endl;
}
return ;
}

POJ_3356——最短编辑距离,动态规划的更多相关文章

  1. (5千字)由浅入深讲解动态规划(JS版)-钢条切割,最大公共子序列,最短编辑距离

    斐波拉契数列 首先我们来看看斐波拉契数列,这是一个大家都很熟悉的数列: // f = [1, 1, 2, 3, 5, 8] f(1) = 1; f(2) = 1; f(n) = f(n-1) + f( ...

  2. [LeetCode] 72. 编辑距离 ☆☆☆☆☆(动态规划)

    https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-mian-shi-ti-xiang-jie-by-labu ...

  3. TZOJ 1072: 编辑距离(动态规划)

    1072: 编辑距离 时间限制(普通/Java):1000MS/10000MS     内存限制:65536KByte 总提交: 917            測试通过:275 描写叙述 如果字符串的 ...

  4. acwing 902. 最短编辑距离

    地址 https://www.acwing.com/problem/content/904/ 给定两个字符串A和B,现在要将A经过若干操作变为B,可进行的操作有: 删除–将字符串A中的某个字符删除. ...

  5. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  6. POJ 3356(最短编辑距离问题)

    POJ - 3356 AGTC Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Desc ...

  7. 72. Edit Distance(编辑距离 动态规划)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  8. 题解【AcWing902】最短编辑距离

    题面 经典的最长公共子序列模型. 我们设 \(dp_{i,j}\) 表示 \(a_{1...i}\) 与 \(b_{1...j}\) 匹配上所需的最少操作数. 考虑删除操作,我们将 \(a_i\) 删 ...

  9. 行编辑距离Edit Distance——动态规划

    题目描写叙述: 给定一个源串和目标串.可以对源串进行例如以下操作:  1. 在给定位置上插入一个字符  2. 替换随意字符  3. 删除随意字符 写一个程序.返回最小操作数,使得对源串进行这些操作后等 ...

随机推荐

  1. Swift: The Basics

    Swift是类型安全的语言: Swift introduces optional types, which handle the absence of a value. Optional say ei ...

  2. [转] 学习HTML/JavaScript/PHP 三者的关系以及各自的作用

    1.What is HTML? When you write a normal document using a word processor like Microsoft Word/Office, ...

  3. apk代码的破解

    方法一:dexdump方法(效果很不好,推荐指数*) 1.搜索到dexdump.exe所在目录: 2.将apk包中的**.dex文件存放到上面目录: 3.命令行中进入上面目录,执行:dexdump   ...

  4. MyBatis 学习总结(一)

    1.原生JDBC(Java database connectity)操作数据库(以MySQL数据为例)步骤 1.1 加载驱动 Class.forName("com.mysql.jdbc.Dr ...

  5. centos7.2下安装mysql5.7,使用rpm包安装

    0.环境 本文操作系统: CentOS 7.2.1511 x86_64 MySQL 版本: 5.7.16 1.卸载系统自带的 mariadb-lib[root@centos-linux ~]# rpm ...

  6. 剪切板 复制文本 ClipboardManager

    代码 public class MainActivity extends ListActivity {     private EditText tv_info;     private Clipbo ...

  7. Activity 【生命周期】

    不同情况下的回调 我们打开应用时先后调用了onCreate()->onStart()->onResume 当我们按BACK键时,我们这个应用程序将结束,这时候我们将先后调用onPause( ...

  8. js的异步的问题的再次理解

    *js是实实在在的单线程语言,在一小个时刻,在(js的执行对列)只有一个执行,一个没有完,另一个必须等待,什么都不做,只有抖着腿的等; *本来语言本身是同步的,之所以是异步执行,是因为在浏览器环境中, ...

  9. Java POI 导出excel表

    1.首先下载poi-3.6-20091214.jar,下载地址如下: http://download.csdn.net/detail/evangel_z/3895051 2.Student.java ...

  10. ecshop首页调用指定商品分类下的商品品牌列表

    转之--http://www.16css.com/ecshop/735.html 通过二次开发可以实现ECSHOP首页调用指定分类下的品牌列表. 第一步: 打开根目录下的index.php 在最后面 ...