Description

Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

  • Deletion: a letter in x is missing in y at a corresponding position.
  • Insertion: a letter in y is missing in x at a corresponding position.
  • Change: letters at corresponding positions are distinct

Certainly, we would like to minimize the number of all possible operations.

Illustration

A G T A A G T * A G G C
| | | | | | |
A G T * C * T G A C G C

Deletion: * in the bottom line Insertion: * in the top line Change: when the letters at the top and bottom are distinct

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

A  G  T  A  A  G  T  A  G  G  C
| | | | | | |
A G T C T G * A C G C

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where nm.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string x into a string y.

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string x into a string y.

Sample Input

10 AGTCTGACGC
11 AGTAAGTAGGC

Sample Output

4

关于最短编辑距离可以看一下我的蓝桥杯子栏中的文章,那里有些分析
这题我只是用来测试蓝桥杯里面的“DNA比对”这题,顺便水过的 - -
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int N = ;
int main()
{
int n1, n2;
char a[N], b[N];
while(cin >> n1 >> a >> n2 >> b)
{
int d1[N + ] = {}, d2[N + ] = {};
for(int i = ; i <= N; i++)
{
d1[i] = i;
} for(int i = ; i <= n1; i++) //a(0, i)
{
d2[] = i;
for(int j = ; j <= n2; j++) //b(0, j)
{
d2[j] = min(d2[j-] + , d1[j] + );
if(a[i - ] == b[j - ])
{
d2[j] = min(d2[j], d1[j-]);
}
else
{
d2[j] = min(d2[j], d1[j-] + );
}
}
for(int k = ; k <= N; k++)
{
d1[k] = d2[k];
}
}
cout << d2[n2] << endl;
}
return ;
}

POJ_3356——最短编辑距离,动态规划的更多相关文章

  1. (5千字)由浅入深讲解动态规划(JS版)-钢条切割,最大公共子序列,最短编辑距离

    斐波拉契数列 首先我们来看看斐波拉契数列,这是一个大家都很熟悉的数列: // f = [1, 1, 2, 3, 5, 8] f(1) = 1; f(2) = 1; f(n) = f(n-1) + f( ...

  2. [LeetCode] 72. 编辑距离 ☆☆☆☆☆(动态规划)

    https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-mian-shi-ti-xiang-jie-by-labu ...

  3. TZOJ 1072: 编辑距离(动态规划)

    1072: 编辑距离 时间限制(普通/Java):1000MS/10000MS     内存限制:65536KByte 总提交: 917            測试通过:275 描写叙述 如果字符串的 ...

  4. acwing 902. 最短编辑距离

    地址 https://www.acwing.com/problem/content/904/ 给定两个字符串A和B,现在要将A经过若干操作变为B,可进行的操作有: 删除–将字符串A中的某个字符删除. ...

  5. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  6. POJ 3356(最短编辑距离问题)

    POJ - 3356 AGTC Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Desc ...

  7. 72. Edit Distance(编辑距离 动态规划)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  8. 题解【AcWing902】最短编辑距离

    题面 经典的最长公共子序列模型. 我们设 \(dp_{i,j}\) 表示 \(a_{1...i}\) 与 \(b_{1...j}\) 匹配上所需的最少操作数. 考虑删除操作,我们将 \(a_i\) 删 ...

  9. 行编辑距离Edit Distance——动态规划

    题目描写叙述: 给定一个源串和目标串.可以对源串进行例如以下操作:  1. 在给定位置上插入一个字符  2. 替换随意字符  3. 删除随意字符 写一个程序.返回最小操作数,使得对源串进行这些操作后等 ...

随机推荐

  1. Protobuf的自动反射消息类型的方法

    1. 每个消息头部中带上type name,作为消息的类型标识 2. 通过type name可以找到描述符Descriptor*, FindMessageTypeByName 3. 通过描述符Desc ...

  2. linux 下各errno的意义

    strerror(errno):获取errno对应的错误 #include <string.h> /* for strerror */ #include <errno.h> # ...

  3. iOS仿喜马拉雅FM做的毕业设计及总结(含新手福利源码)

    其实仿喜马拉雅FM很早就开始了,从我刚接触iOS开始,就开始仿做了一部分,眼尖的人都从我的github找到了那个项目.随着找到实习iOS工作,仿写就落下了,但唯一的收获就是给过去打了一个响亮的耳光,因 ...

  4. java定时器,Spring定时器和Quartz定时器

    一.java定时器的应用 其实java很早就有解决定时器任务的方法了,java提供了了类java.util.TimerTask类基于线程的方式来实现定时任务的操作,然后再提供java.util.Tim ...

  5. C#中的IO流操作(FileStream)

    StreamReader和StreamWriter适用于对文本文件的操作,因为它是以字符为单位进行的操作 不用担心编码问题 using (Stream s = new FileStream(@&quo ...

  6. 转载:C# HashSet 用法

    原文地址:http://www.cnblogs.com/xiaopin/archive/2011/01/08/1930540.html   感谢博主分享! NET 3.5在System.Collect ...

  7. 在ASP.NET MVC5 及 Visual Studio 2013 中为Identity账户系统配置数据库链接及Code-First数据库迁移

    在ASP.NET MVC5 及 Visual Studio 2013 中为Identity账户系统配置数据库链接及Code-First数据库迁移 最近发布的ASP.NET MVC 5 及Visual ...

  8. jQueryUI 日期控件

    <!DOCTYPE html><html><head><meta charset="UTF-8"><title>Inse ...

  9. bootstrap栅格布局

    <!DOCTYPE html> <html lang="en"> <head> <!-- //简介:boststrap内置了一套响应式,移 ...

  10. (转)ThinkPHP系统常量

    __ROOT__ : 网站根目录地址 __APP__ : 当前项目(入口文件)地址 __URL__ : 当前模块地址 __ACTION__ : 当前操作地址 __SELF__ : 当前 URL 地址 ...