Description

Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

  • Deletion: a letter in x is missing in y at a corresponding position.
  • Insertion: a letter in y is missing in x at a corresponding position.
  • Change: letters at corresponding positions are distinct

Certainly, we would like to minimize the number of all possible operations.

Illustration

A G T A A G T * A G G C
| | | | | | |
A G T * C * T G A C G C

Deletion: * in the bottom line Insertion: * in the top line Change: when the letters at the top and bottom are distinct

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

A  G  T  A  A  G  T  A  G  G  C
| | | | | | |
A G T C T G * A C G C

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where nm.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string x into a string y.

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string x into a string y.

Sample Input

10 AGTCTGACGC
11 AGTAAGTAGGC

Sample Output

4

关于最短编辑距离可以看一下我的蓝桥杯子栏中的文章,那里有些分析
这题我只是用来测试蓝桥杯里面的“DNA比对”这题,顺便水过的 - -
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int N = ;
int main()
{
int n1, n2;
char a[N], b[N];
while(cin >> n1 >> a >> n2 >> b)
{
int d1[N + ] = {}, d2[N + ] = {};
for(int i = ; i <= N; i++)
{
d1[i] = i;
} for(int i = ; i <= n1; i++) //a(0, i)
{
d2[] = i;
for(int j = ; j <= n2; j++) //b(0, j)
{
d2[j] = min(d2[j-] + , d1[j] + );
if(a[i - ] == b[j - ])
{
d2[j] = min(d2[j], d1[j-]);
}
else
{
d2[j] = min(d2[j], d1[j-] + );
}
}
for(int k = ; k <= N; k++)
{
d1[k] = d2[k];
}
}
cout << d2[n2] << endl;
}
return ;
}

POJ_3356——最短编辑距离,动态规划的更多相关文章

  1. (5千字)由浅入深讲解动态规划(JS版)-钢条切割,最大公共子序列,最短编辑距离

    斐波拉契数列 首先我们来看看斐波拉契数列,这是一个大家都很熟悉的数列: // f = [1, 1, 2, 3, 5, 8] f(1) = 1; f(2) = 1; f(n) = f(n-1) + f( ...

  2. [LeetCode] 72. 编辑距离 ☆☆☆☆☆(动态规划)

    https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-mian-shi-ti-xiang-jie-by-labu ...

  3. TZOJ 1072: 编辑距离(动态规划)

    1072: 编辑距离 时间限制(普通/Java):1000MS/10000MS     内存限制:65536KByte 总提交: 917            測试通过:275 描写叙述 如果字符串的 ...

  4. acwing 902. 最短编辑距离

    地址 https://www.acwing.com/problem/content/904/ 给定两个字符串A和B,现在要将A经过若干操作变为B,可进行的操作有: 删除–将字符串A中的某个字符删除. ...

  5. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  6. POJ 3356(最短编辑距离问题)

    POJ - 3356 AGTC Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Desc ...

  7. 72. Edit Distance(编辑距离 动态规划)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  8. 题解【AcWing902】最短编辑距离

    题面 经典的最长公共子序列模型. 我们设 \(dp_{i,j}\) 表示 \(a_{1...i}\) 与 \(b_{1...j}\) 匹配上所需的最少操作数. 考虑删除操作,我们将 \(a_i\) 删 ...

  9. 行编辑距离Edit Distance——动态规划

    题目描写叙述: 给定一个源串和目标串.可以对源串进行例如以下操作:  1. 在给定位置上插入一个字符  2. 替换随意字符  3. 删除随意字符 写一个程序.返回最小操作数,使得对源串进行这些操作后等 ...

随机推荐

  1. 图片预览(base64和blob:图片链接)和ajax上传、下载(带进度提示)

    直接上代码 html和js <!DOCTYPE html> <html> <head> <meta name="viewport" con ...

  2. Block小结

    Blocks是C语言的扩充功能.用一句话来表示Blocks的扩充功能:带有自动变量(局部变量)的匿名函数. block其实是一个代码块,但是它的神奇之处在于在内联(inline)执行的时候(这和C++ ...

  3. 常用 cmd 命令

    msconfig-------系统配置实用程序 mspaint--------画图板 devmgmt.msc--- 设备管理器 diskmgmt.msc---磁盘管理实用程序 services.msc ...

  4. BaseBean构造

    package cn.jsonlu.passguard.model; import cn.jsonlu.passguard.utils.MD5Util; import com.fasterxml.ja ...

  5. codevs 1139 观光公交

    #include<cstdio> #include<cstdlib> #include<cstring> #define max(a,b) (a > b ? ...

  6. POJ 2411.Mondriaan's Dream 解题报告

    题意: 给出n*m (1≤n.m≤11)的方格棋盘,用1*2的长方形骨牌不重叠地覆盖这个棋盘,求覆盖满的方案数. Solution:                位运算+状态压缩+dp       ...

  7. Google jQuery URL

    Query 在线地址:https://developers.google.com/speed/libraries/devguide?hl=zh-CN#jquery此地址里还包含了很多的JS框架.

  8. Java中的ExceptionInInitializerError异常及解决方法

    当在静态初始化块中出现了异常的时候,JVM会抛出 java.lang.ExceptionInInitializerError异常.如果你了解Java中的静态变量,你会知道它们是在类加载的时候进行初始化 ...

  9. 初涉JavaScript模式 (9) : 函数 【常用方式】

    回调模式 上一篇,对JavaScript函数进行了大体的介绍,这一篇对一些在工作中经常遇到的情况进行扩展. 在工作中,我们经常遇到很多需求,比如现在有一个需求: 一栋10层的大楼,当我们在坐电梯时,电 ...

  10. eval("表达式")

    eval就是把字符串转成可执行代码eval("表达式");表达式被翻译成JavaScript代码执行比如eval("alert('test')");等于aler ...