POJ_3356——最短编辑距离,动态规划
Description
Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:
- Deletion: a letter in x is missing in y at a corresponding position.
- Insertion: a letter in y is missing in x at a corresponding position.
- Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.
Illustration
A G T A A G T * A G G C
| | | | | | |
A G T * C * T G A C G CDeletion: * in the bottom line Insertion: * in the top line Change: when the letters at the top and bottom are distinct
This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like
A G T A A G T A G G C
| | | | | | |
A G T C T G * A C G C
and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m.
Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.
Write a program that would minimize the number of possible operations to transform any string x into a string y.
Input
The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.
Output
An integer representing the minimum number of possible operations to transform any string x into a string y.
Sample Input
10 AGTCTGACGC
11 AGTAAGTAGGC
Sample Output
4 关于最短编辑距离可以看一下我的蓝桥杯子栏中的文章,那里有些分析
这题我只是用来测试蓝桥杯里面的“DNA比对”这题,顺便水过的 - -
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int N = ;
int main()
{
int n1, n2;
char a[N], b[N];
while(cin >> n1 >> a >> n2 >> b)
{
int d1[N + ] = {}, d2[N + ] = {};
for(int i = ; i <= N; i++)
{
d1[i] = i;
} for(int i = ; i <= n1; i++) //a(0, i)
{
d2[] = i;
for(int j = ; j <= n2; j++) //b(0, j)
{
d2[j] = min(d2[j-] + , d1[j] + );
if(a[i - ] == b[j - ])
{
d2[j] = min(d2[j], d1[j-]);
}
else
{
d2[j] = min(d2[j], d1[j-] + );
}
}
for(int k = ; k <= N; k++)
{
d1[k] = d2[k];
}
}
cout << d2[n2] << endl;
}
return ;
}
POJ_3356——最短编辑距离,动态规划的更多相关文章
- (5千字)由浅入深讲解动态规划(JS版)-钢条切割,最大公共子序列,最短编辑距离
斐波拉契数列 首先我们来看看斐波拉契数列,这是一个大家都很熟悉的数列: // f = [1, 1, 2, 3, 5, 8] f(1) = 1; f(2) = 1; f(n) = f(n-1) + f( ...
- [LeetCode] 72. 编辑距离 ☆☆☆☆☆(动态规划)
https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-mian-shi-ti-xiang-jie-by-labu ...
- TZOJ 1072: 编辑距离(动态规划)
1072: 编辑距离 时间限制(普通/Java):1000MS/10000MS 内存限制:65536KByte 总提交: 917 測试通过:275 描写叙述 如果字符串的 ...
- acwing 902. 最短编辑距离
地址 https://www.acwing.com/problem/content/904/ 给定两个字符串A和B,现在要将A经过若干操作变为B,可进行的操作有: 删除–将字符串A中的某个字符删除. ...
- [LeetCode] 72. Edit Distance(最短编辑距离)
传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...
- POJ 3356(最短编辑距离问题)
POJ - 3356 AGTC Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Desc ...
- 72. Edit Distance(编辑距离 动态规划)
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- 题解【AcWing902】最短编辑距离
题面 经典的最长公共子序列模型. 我们设 \(dp_{i,j}\) 表示 \(a_{1...i}\) 与 \(b_{1...j}\) 匹配上所需的最少操作数. 考虑删除操作,我们将 \(a_i\) 删 ...
- 行编辑距离Edit Distance——动态规划
题目描写叙述: 给定一个源串和目标串.可以对源串进行例如以下操作: 1. 在给定位置上插入一个字符 2. 替换随意字符 3. 删除随意字符 写一个程序.返回最小操作数,使得对源串进行这些操作后等 ...
随机推荐
- iOS报错Expected selector for Objective-C method
这个报错非常恶心:原因竟然是在导入头文件的地方多写了一个"+"号,可能问题在一个文件,报错在另一个文件
- Wpf ListBox数据绑定实例1--绑定字典集合
1.使用ListBox绑定Dictionary字典数据 ListBox常用事件SelectionChanged private void bindListBox() { Dictionary<s ...
- 为什么z-index不起作用
感觉很简单的东西 在用的时候 可能会遇到这样活那样的问题 这就是要注意细节:参考地址:http://www.ourjour.com/136/ 设置z-index 不起作用,可能是这三个原因: 1.父标 ...
- iOS App上传中遇到的问题
1. 今天打包上传文件时出现“Missing iOS Distribution signing identity for XXXX” 导致问题的原因是:下边这个证书过期了 以下是苹果官方给出的回应: ...
- CSS代码语法
css 样式由选择符和声明组成,而声明又由属性和值组成,如下图所示: 选择符:又称选择器,指明网页中要应用样式规则的元素,如本例中是网页中所有的段(p)的文字将变成蓝色,而其他的元素(如ol)不会受到 ...
- Protostuff自定义序列化(Delegate)解析
背景 在使用Protostuff进行序列化的时候,不幸地遇到了一个问题,就是Timestamp作为字段的时候,转换出现问题,通过Protostuff转换后的结果都是1970-01-01 08:00:0 ...
- Android学习-----Button点击事件几种写法
Button点击事件:大概可以分为以下几种: 匿名内部类 定义内部类,实现OnClickListener接口 定义的构造方法 用Activity实现OnClickListener接口 指定Button ...
- Excel报表
Excel报表 1.Excel报表导入到GridView protected void Page_Load(object sender, EventArgs e) { string path = Se ...
- thinkphp T方法
为了更方便的输出模板文件,新版封装了一个T函数用于生成模板文件名. 用法: T([资源://][模块@][主题/][控制器/]操作,[视图分层]) T函数的返回值是一个完整的模板文件名,可以直接用于d ...
- 学c语言做练习之统计文件中字符的个数
统计文件中字符的个数(采用命令行参数) #include<stdio.h> #include<stdlib.h> int main(int argc, char *argv[] ...