「SOL」E-Lite (Ural Championship 2013)
为什么这数据能水到可以枚举角度 ac 啊
# 题面
给你 \(n\) 个平面向量 \((x_i,y_i)\),对于每个 \(k=1\sim n\),求「从给出的 \(n\) 个向量中不重复地选择 \(k\) 个,\(k\) 个向量的和的模长最大是多少」。
数据规模:\(n\le1000\)。
# 解析
这种「选择 \(k\) 个」的题目,我们之前往往会从 DP 考虑,或者贪心求解。但是我们发现向量并不满足局部最优就是全局最优。
于是这道题我们换一个思路,不从选的过程考虑,而从选的结果 —— 也就是答案的角度考虑。
如果我们知道了答案为 \(\mathbf{v}\),那么一定是由在 \(\mathbf{v}\) 方向上投影最大的 \(k\) 个向量组成的。于是我们可以尝试「旋转」答案向量的方向,然后贪心地选取向量。
虽然数据水,离散地枚举答案向量角度可以 ac,但是角度毕竟是连续的,这种做法不是很靠谱(但是很难卡掉)。
连续的枚举一般考虑枚举临界点。不妨设我们逆时针旋转答案向量 \(\mathbf{v}\),记 id[i] 表示当前在 \(\mathbf{v}\) 方向上投影从大到小第 \(i\) 个向量是哪一个,同理定义 rnk[i] 表示 \(i\) 向量的排名(rnk[id[i]] = i)。
我们发现只有 id 发生变化 —— 也即两个向量的相对投影大小改变时,答案才会改变。设 \(\mathbf{u,v}\) 为两个方向不同的向量:

于是一对向量会产生两个临界点,总共会有 \(\mathcal{O}(n^2)\) 个临界。将它们极角排序过后逆时针扫一遍。
每经过一个临界点,就会有 rank 相邻的两个向量的 rank 发生交换(记为 rnk, rnk + 1)。扫描时,维护当前 rank,当 rnk, rnk + 1 交换时,只会改变前 rnk 个和前 rnk + 1 个向量的和,\(\mathcal{O}(1)\) 更新答案即可。
唯一的麻烦点是给出的 \(n\) 个向量可能重叠……我的处理是把重叠的向量看成一个,记录一下个数。只能自己意会一下或者看一看代码了。
# 源代码
/*Lucky_Glass*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long double ldouble;
const int N = 1005;
const ldouble EPS = 1e-12;
#define con(typ) const typ &
#define sec second
#define fir first
template<class typ> typ iAbs(con(typ) key) {return key < 0 ? -key : key;}
template<class typ> int sgn(con(typ) key) {
if ( iAbs(key) <= EPS ) return 0;
return key < 0 ? -1 : 1;
}
struct Vector {
ldouble x, y;
Vector() {}
Vector(con(ldouble) _x, con(ldouble) _y) : x(_x), y(_y) {}
ldouble len() const {return x * x + y * y;}
Vector operator - (con(Vector) p) const {
return Vector(x - p.x, y - p.y);
}
Vector operator + (con(Vector) p) const {
return Vector(x + p.x, y + p.y);
}
friend ldouble dot(con(Vector) p, con(Vector) q) {
return p.x * q.x + p.y * q.y;
}
Vector operator -() const {return Vector(-x, -y);}
bool operator != (con(Vector) p) const {
return sgn(x - p.x) || sgn(y - p.y);
}
bool operator < (con(Vector) p) const {
if ( sgn(x - p.x) ) return sgn(x - p.x) < 0;
return sgn(y - p.y) < 0;
}
Vector cwise90() const {return Vector(y, -x);}
} sum[N];
struct Data {
Vector v; int cnt;
Data() {}
Data(con(Vector) _v, con(int) _c) : v(_v), cnt(_c) {}
} dat[N];
int nn, n, ndv;
pair<int, int> inp[N];
int cnt[N], rnk[N];
ldouble ans[N];
struct Divi {
int a, b;
ldouble ang;
Divi() {}
Divi(con(int) _a, con(int) _b, con(ldouble) _ang)
: a(_a), b(_b), ang(_ang) {}
bool operator == (con(Divi) p) const {return !sgn(ang - p.ang);}
static bool cmpAng(con(Divi) p, con(Divi) q) {return sgn(p.ang - q.ang) < 0;}
static bool cmpID(con(Divi) p, con(Divi) q) {
if ( rnk[p.a] != rnk[q.a] ) return rnk[p.a] < rnk[q.a];
return rnk[p.b] < rnk[q.b];
}
} dv[N * N];
void init() {
sum[0] = Vector(0, 0);
for (int i = 1, tmp = 0; i <= n; i++) {
for (int j = 1; j <= dat[i].cnt; j++) {
tmp++;
sum[tmp] = sum[tmp - 1] + dat[i].v;
ans[tmp] = sum[tmp].len();
}
rnk[i] = i, cnt[i] = tmp;
}
}
// q is better than p then
void done(con(int) p, con(int) q) {
// assert( rnk[p] == rnk[q] - 1 );
int tmp = cnt[rnk[p] - 1];
for (int i = 1; i <= dat[q].cnt; i++) {
tmp++;
sum[tmp] = sum[tmp - 1] + dat[q].v;
ans[tmp] = max(ans[tmp], sum[tmp].len());
}
cnt[rnk[p]] = tmp;
for (int i = 1; i <= dat[p].cnt; i++) {
tmp++;
sum[tmp] = sum[tmp - 1] + dat[p].v;
ans[tmp] = max(ans[tmp], sum[tmp].len());
}
swap(rnk[p], rnk[q]);
}
int main() {
scanf("%d", &nn);
for (int i = 1; i <= nn; i++)
scanf("%d%d", &inp[i].fir, &inp[i].sec);
sort(inp + 1, inp + 1 + nn);
for (int i = 1; i <= nn;) {
int j = i;
while ( j <= nn && inp[i] == inp[j] ) j++;
dat[++n] = Data(Vector(inp[i].fir, inp[i].sec), j - i);
inp[n] = inp[i];
i = j;
}
for (int i = 1; i <= n; i++)
for (int j = i + 1; j <= n; j++) {
double k1 = atan2(inp[j].fir - inp[i].fir, inp[i].sec - inp[j].sec),
k2 = atan2(inp[i].fir - inp[j].fir, inp[j].sec - inp[i].sec);
dv[++ndv] = Divi(j, i, k1);
dv[++ndv] = Divi(i, j, k2);
}
sort(dv + 1, dv + 1 + ndv, Divi::cmpAng);
init();
for (int i = 1; i <= ndv; ) {
int j = i;
while ( j <= ndv && dv[i] == dv[j] ) j++;
sort(dv + i, dv + j, Divi::cmpID);
while ( i < j ) {
done(dv[i].a, dv[i].b);
i++;
}
}
for (int i = 1; i <= nn; i++)
printf("%.8f\n", (double)sqrt(ans[i]));
return 0;
}
THE END
Thanks for reading!
「SOL」E-Lite (Ural Championship 2013)的更多相关文章
- loj#2013. 「SCOI2016」幸运数字 点分治/线性基
题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...
- loj #2013. 「SCOI2016」幸运数字
#2013. 「SCOI2016」幸运数字 题目描述 A 国共有 n nn 座城市,这些城市由 n−1 n - 1n−1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以 ...
- AC日记——「SCOI2016」幸运数字 LiBreOJ 2013
「SCOI2016」幸运数字 思路: 线性基: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 20005 # ...
- FileUpload控件「批次上传 / 多档案同时上传」的范例--以「流水号」产生「变量名称」
原文出處 http://www.dotblogs.com.tw/mis2000lab/archive/2013/08/19/multiple_fileupload_asp_net_20130819. ...
- 一本通1648【例 1】「NOIP2011」计算系数
1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...
- 「SCOI2016」背单词
「SCOI2016」背单词 Lweb 面对如山的英语单词,陷入了深深的沉思,「我怎么样才能快点学完,然后去玩三国杀呢?」.这时候睿智的凤老师从远处飘来,他送给了 Lweb 一本计划册和一大缸泡椒,然后 ...
- loj2009. 「SCOI2015」小凸玩密室
「SCOI2015」小凸玩密室 小凸和小方相约玩密室逃脱,这个密室是一棵有 $ n $ 个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室.每个灯泡有个权值 $ A_i $,每条边也有个 ...
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- JavaScript OOP 之「创建对象」
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...
随机推荐
- blog2对PTA4,5,6集的习题总结
一. 前言 通过本三次PTA得题目,我受益匪浅.题量的话不算太多,但是题目难度有些大.在本次PTA第六次题目集中,题目难度较中,第四次题目集第一道水文数据处理与第五次题目集的查询关键字出现次 ...
- Maven简答题
1.什么是Maven? 自动化构建工具,专注服务于Java平台的项目构建和依赖管理 2.使用Maven的好处以及原因? (1)大量的jar包反复复制,造成冗余.使用Maven后每个jar包只在本地仓库 ...
- uni-app学习笔记之----不同平台,独立设置
(不断补充中...) 1.导航栏 2.条件编译 不同的条件标记,会被编译到不同的平台 开头:[#ifdef]或[#ifndef] + 平台名称 结尾:[#endif] html中: js中: css中 ...
- (一)用go实现单链表
本篇,我们用go简单的实现单链表这种数据结构. 1.节点定义 type Node struct{ data int next *Node } 2.节点的添加 // 尾插法插入节点 func (p *N ...
- 性能测试-性能分析思路以及CPU
1.性能分析思路 性能测试分析的思路:先分析硬件 .网络. 系统配置.应用程序 硬件: cpu.内存.磁盘.网络.io 4.常见问题处理4.1 常见问题及解决方法如果r经常大于4,且id经常少于40, ...
- 推荐优秀国产蓝牙芯片-HS6621CxC系列
HS6621CxC是一个优化功耗真正芯片系统(SOC)解决方案,适用于蓝牙低功耗和私有的2.4GHz应用场景.它集成了一个高性能.小功率的射频收发器,具有蓝牙基带和丰富的外围IO扩展. HS6621C ...
- 2022NCTF
是真的菜 开始复现把 calc 访问之后获得源码 @app.route("/calc",methods=['GET']) def calc(): ip = request.remo ...
- [转并修改]C#编程中跨线程访问控件
C#编程中跨线程访问控件 一.简述 二.Winforms中跨线程访问控件 三.WPF中跨线程访问控件 参考文档 一.简述 C#中不允许跨线程直接访问界面控件,即一个线程中如主线程创建的控件不允许被其他 ...
- 给含有关键词的label着色
给含有关键词的label着色 FineFileType() { let arr = document.querySelectorAll('.el-checkbox__label'); for (let ...
- windows远程桌面之前用于连接到xxx的凭据无法工作
使用windows远程桌面连接时报错提示: 之前用于连接到xxx的凭据无法工作 确认输入的用户名密码没有问题 解决方法: 打开gpedit.msc组策略管理,依次找到 计算机配置 > windo ...