AtCoder Beginner Conest 284 解题报告

\(\text{By DaiRuiChen007}\)

\(\text{Contest Link}\)

A. Sequence of Strings

模拟,时间复杂度 \(\Theta(n)\)

#include<bits/stdc++.h>
using namespace std; signed main() {
int n;
cin>>n;
vector <string> v(n);
for(int i=n-1;i>=0;--i) cin>>v[i];
for(auto p:v) cout<<p<<"\n";
return 0;
}

B. Multi Test Cases

模拟,时间复杂度 \(\Theta(Tn)\)

#include<bits/stdc++.h>
using namespace std; signed main() {
int T;
scanf("%d",&T);
while(T--) {
int n,ans=0;
scanf("%d",&n);
for(int i=1;i<=n;++i) {
int a;
scanf("%d",&a);
if(a%2==1) ++ans;
}
printf("%d\n",ans);
}
return 0;
}

C. Count Connected Components

dfs 标记,时间复杂度 \(\Theta(n+m)\)

#include<bits/stdc++.h>
using namespace std;
const int MAXN=301;
vector <int> G[MAXN];
bool vis[MAXN];
inline void dfs(int p) {
vis[p]=true;
for(int v:G[p]) if(!vis[v]) dfs(v);
}
signed main() {
int n,m,ans=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i) {
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=1;i<=n;++i) if(!vis[i]) ++ans,dfs(i);
printf("%d\n",ans);
return 0;
}

D. Happy New Year 2023

枚举 \(\min(p,q)\),注意到 \(\min(p,q)\) 应该是 \(\sqrt[3]n\) 级别的,因此时间复杂度 \(\Theta(T\sqrt[3]n)\)

#include<bits/stdc++.h>
#define int long long
using namespace std;
inline int sqr(int x) {
int k=sqrt(x);
for(int ret=k-10;ret<=k+10;++ret) {
if(k<0) continue;
if(k*k==x) return k;
}
return -1;
}
inline void solve() {
int n;
scanf("%lld",&n);
for(int i=2;i*i*i<=n;++i) {
if(n%i==0) {
if(n%(i*i)==0) printf("%lld %lld\n",i,n/(i*i));
else printf("%lld %lld\n",sqr(n/i),i);
return ;
}
}
}
signed main() {
int T;
scanf("%lld",&T);
while(T--) solve();
return 0;
}

E. Count Simple Paths

大力 dfs,搜索的时候用数组记录一下每个点是否已经在路径中即可

注意到每次搜到一个点后答案会 \(+1\),因此最多访问 \(10^6\) 个点,而每搜到一个点至多遍历与其相邻的 \(10\) 个点

时间复杂度 \(\Theta(k\deg(v))\),其中 \(k=\min(10^6,\text{ans})\),\(\deg(v)\) 表示最大度数

#include<bits/stdc++.h>
using namespace std;
const int MAXN=2e5+1,LIM=1e6;
int ans=0;
vector <int> G[MAXN];
bool inq[MAXN];
inline void dfs(int p) {
inq[p]=true;
++ans;
if(ans==LIM) {
printf("%d\n",LIM);
exit(0);
}
for(int v:G[p]) if(!inq[v]) dfs(v);
inq[p]=false;
}
signed main() {
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i) {
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(1);
printf("%d\n",ans);
return 0;
}

F. ABCBAC

对原序列做从左至右和从右至左的字符串哈希,对于每个 \(i\) 计算哈希值并比较即可

时间复杂度 \(\Theta(n)\)

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN=2e6+1,BASE=13331,MOD=998244353;
char str[MAXN],rev[MAXN];
int p[MAXN],s[MAXN][2];
inline int q(int l,int r,int op) {
return (s[r][op]+MOD-s[l-1][op]*p[r-l+1]%MOD)%MOD;
}
signed main() {
int n;
scanf("%lld%s",&n,str+1);
for(int i=1;i<=2*n;++i) rev[i]=str[2*n-i+1];
p[0]=1;
for(int i=1;i<=2*n;++i) {
p[i]=p[i-1]*BASE%MOD;
s[i][0]=(s[i-1][0]*BASE+str[i]-'a')%MOD;
s[i][1]=(s[i-1][1]*BASE+rev[i]-'a')%MOD;
}
for(int i=0;i<=n;++i) {
if((q(1,i,0)*p[n-i]%MOD+q(n+i+1,2*n,0))%MOD==q(n-i+1,2*n-i,1)) {
for(int j=1;j<=i;++j) printf("%c",str[j]);
for(int j=n+i+1;j<=2*n;++j) printf("%c",str[j]);
printf("\n%lld\n",i);
return 0;
}
}
puts("-1");
return 0;
}

G - Only Once

考虑在所有的 \((a_i,i)\) 之间连边,我们能够得到一棵基环树,而 \(s_i\) 事实上就是 \(i\) 到基环树中环的距离

我们可以把 \(s_i\) 理解为一条长度为 \(s_i\) 的链接一个环,考虑拆贡献,对于每个 \(1\sim n\) 的 \(k\),我们统计有多少种情况使得图中有一个恰好长度为 \(k\) 的链

首先确定长度为 \(k\) 的链,我们先从 \(n\) 个数里任选 \(k\) 个,然后对其进行排列,得到这一步的方案数为 \(\binom nk\times k!\) 种

而在确定了链之后,我们要在链的后面接一个环,假设其长度为 \(j\),我们同样在剩下的 \(n-k\) 个数里任选 \(j\) 个然后进行排列,不过注意到不同的点与链相连算不同的方案,因此此处的排列方案数为 \(j\times(j-1)!\) 种,总方案数为 \(\binom {n-k}j\times j!\)

而剩下的 \(n-k-l\) 个点随意选择连接的节点,方案数 \(n^{n-k-l}\)

因此我们得到答案的表达式:

\[\begin{aligned}
\text{answer}
&=\sum_{k=0}^n k\times\binom nk\times k!\times\sum_{j=1}^{n-k} \binom{n-k}j\times j!\times n^{n-k-j}\\
&=\sum_{k=0}^n\sum_{j=1}^{n-k} k\times\binom nk\times k!\times\binom{n-k}j\times j!\times n^{n-k-j}\\
&=\sum_{k=0}^n\sum_{j=1}^{n-k}k\times\dfrac{n!}{k!\times(n-k!)}\times k!\times\dfrac{(n-k)!}{j!(n-k-j)!}\times j!\times n^{n-k-j}\\
&=\sum_{(j+k)=1}^n\sum_{k=0}^{(j+k)-1} k\times \dfrac{n!}{(n-j-k)!}\times n^{n-j-k}\\
&=\sum_{i=1}^n \dfrac{n!}{(n-i)!}\times n^{n-i}\times\sum_{k=0}^{i-1}k\\
&=\sum_{i=1}^n\dfrac{n!}{(n-i)!}\times n^{n-i}\times \dfrac{i\times(i-1)}2
\end{aligned}
\]

其中在化简的过程中我们令 \(i=j+k\) 方便表达

注意到 \(\dfrac{n!}{(n-i)!}\) 可以在递推预处理得到,因此时间复杂度为 \(\Theta(n\log n)\),\(\Theta(\log n)\) 为快速幂复杂度

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN=2e5+1;
int f[MAXN];
inline int ksm(int a,int b,int m) {
int ret=1;
while(b) {
if(b&1) ret=ret*a%m;
a=a*a%m;
b=b>>1;
}
return ret;
}
signed main() {
int n,mod,ans=0;
scanf("%lld%lld",&n,&mod);
f[n]=1;
for(int i=n;i>=1;--i) f[i-1]=f[i]*i%mod;
for(int k=1;k<=n;++k) ans=(ans+k*(k-1)/2%mod*ksm(n,n-k,mod)%mod*f[n-k]%mod)%mod;
printf("%lld\n",ans);
}

AtCoder Beginner Conest 284 解题报告的更多相关文章

  1. AtCoder Beginner Contest 285 解题报告

    AtCoder Beginner Contest 285 解题报告 \(\text{DaiRuiChen007}\) Contest Link A. Edge Checker 2 假设 \(a\ge ...

  2. AtCoder Beginner Contest 122 解题报告

    手速选手成功混进rated only里面的前30名,但是总排名就到110+了... A - Double Helix #include <bits/stdc++.h> #define ll ...

  3. AtCoder Beginner Contest 146解题报告

    题目地址 https://atcoder.jp/contests/abc146/tasks 感觉没有什么有意思的题... 题解 A #include <bits/stdc++.h> usi ...

  4. Atcoder Beginner Contest 124 解题报告

    心态爆炸.本来能全做出来的.但是由于双开了Comet oj一个比赛,写了ABC就去搞那个的B题 还被搞死了. 回来写了一会D就过了.可惜比赛已经结束了.真的是作死. A - Buttons #incl ...

  5. AtCoder Beginner Contest 118 解题报告

    A - B +/- A #include <bits/stdc++.h> int main() { int a, b; std::cin >> a >> b; b ...

  6. AtCoder Beginner Contest 120 解题报告

    为啥最近都没有arc啊... A - Favorite Sound #include <algorithm> #include <iostream> #include < ...

  7. AtCoder Beginner Contest 117 解题报告

    果然abc都是手速场. 倒序开的qwq. D题因为忘记1e12二进制几位上界爆了一发. A - Entrance Examination 就是除一下就行了... 看样例猜题意系列. #include& ...

  8. AtCoder Beginner Contest 132 解题报告

    前四题都好水.后面两道题好难. C Divide the Problems #include <cstdio> #include <algorithm> using names ...

  9. AtCoder Beginner Contest 129 解题报告

    传送门 写了四个题就跑去打球了.第五题应该能肝出来的. A - Airplane #include <bits/stdc++.h> using namespace std; inline ...

随机推荐

  1. Vue ref 和 v-for 结合(ref 源码解析)

    前言 Vue 中组件的使用很方便,而且直接取组件实例的属性方法等也很方便,其中通过 ref 是最普遍的. 平时使用中主要是对一个组件进行单独设置 ref ,但是有些场景下可能是通过给定数据渲染的,这时 ...

  2. Pycharm自定义实时模板

    pycharm添加模板 添加装饰器模板 # 1.file-->Setting-->Editor-->Code Style -->Live Templates# 2." ...

  3. PYQT5 学习

    zetcode教程 汉化版: https://maicss.gitbook.io/pyqt5-chinese-tutoral/ 官方网站: https://www.riverbankcomputing ...

  4. BERT模型源码解析

    BERT模型源码解析 modeling.py 目录 属性 类 class BertConfig(object)   BERT模型配置参数类 class BertModel(object)   BERT ...

  5. C#设置picturebox滚动条来实现查看大图片

    要给PictureBox添加滚动条需要以下步骤:    (1)将picturebox放在panel上:   ( 2)将panel的AutoScroll设置为ture:    (3)将picturebo ...

  6. MobaXterm/Xshell快速命令宏配置

    背景:使用MobaXterm或者Xshell连接远程服务器时,添加常用的命令宏一键执行,能提高效率节约时间. 使用方法: MobaXterm: 1)左边菜单栏->Macros->Recor ...

  7. 并发bug之源(二)-有序性

    什么是有序性? 简单来说,假设你写了下面的程序: int a = 1; int b = 2; System.out.println(a); System.out.println(b); 但经过编译器/ ...

  8. MySQL数据库:6、约束的概述及语法

    Python基础之MySQL数据库 目录 Python基础之MySQL数据库 一.约束概述 1.为什么要约束 2.什么是约束 3.约束的分类 4.查看当前表已有的约束 二.约束语法及用法 1.无符号 ...

  9. 一文教会你如何在内网搭建一套属于自己小组的在线 API 文档?

    Hello,大家好,我是阿粉,对接文档是每个开发人员不可避免都要写的,友好的文档可以大大的提升工作效率. 阿粉最近将项目的文档基于 Gitbook 和 Gitlab 的 Webhook 功能的在内网部 ...

  10. python字符串常用方法介绍,基于python3.10

    python字符串常用方法-目录: 1.strip().lstrip().rstrip()2.removeprefix().removesuffix()3.replace()4.split().rsp ...