1.拜占庭将军问题

拜占庭位于如今的土耳其的伊斯坦布尔,是东罗马帝国的首都。由于当时拜占庭罗马帝国国土辽阔,为了达到防御目的,每个军队都分隔很远,将军与将军之间只能靠信差传消息。在战争的时候,拜占庭军队内所有将军和副官必须达成一致的共识,决定是否有赢的机会才去攻打敌人的阵营。但是,在军队内有可能存有叛徒和敌军的间谍,左右将军们的决定又扰乱整体军队的秩序。在进行共识时,结果并不代表大多数人的意见。这时候,在已知有成员谋反的情况下,其余忠诚的将军在不受叛徒的影响下如何达成一致的协议,拜占庭问题就此形成

拜占庭将军问题(Byzantine failures),是由莱斯利·兰伯特提出的点对点通信中的基本问题。含义是在存在消息丢失的不可靠信道上试图通过消息传递的方式达到一致性是不可能的。

“拜占庭将军问题”延伸到互联网生活中来,其内涵可概括为:在互联网大背景下,当需要与不熟悉的对方进行价值交换活动时,人们如何才能防止不会被其中的恶意破坏者欺骗、迷惑从而作出错误的决策。进一步将“拜占庭将军问题”延伸到技术领域中来,其内涵可概括为:在缺少可信任的中央节点和可信任的通道的情况下,分布在网络中的各个节点应如何达成共识。拜占庭假设是对现实世界的模型化,由于硬件错误、网络拥塞或断开以及遭到恶意攻击,计算机和网络可能出现不可预料的行为。

解决方法:

(1)口信消息型拜占庭问题之解

兰伯特在论文《The Byzantine Generals Problem》中提到的口信消息型拜占庭问题之解:如果叛将人数为 m,将军人数不能少于 3m + 1 ,那么拜占庭将军问题就能解决了。

这个算法有个前提,也就是叛将人数 m,或者说能容忍的叛将数 m,是已知的。在这个算法中,叛将数 m 决定递归循环的次数(也就是说,叛将数 m 决定将军们要进行多少轮作战信息协商),即 m+1 轮(所以,你看,只有楚是叛变的,那么就进行了两轮)。你也可以从另外一个角度理解:n 位将军,最多能容忍 (n - 1) / 3 位叛将。

拜占庭将军问题:有叛徒的情况下,如何才能达成共识?

(2)签名消息型拜占庭问题之解

这个解决办法,是兰伯特在论文中提到的签名消息型拜占庭问题之解。而通过签名机制约束叛将的叛变行为,任何叛变行为都会被发现,也就会实现无论有多少忠诚的将军和多少叛将,忠诚的将军们总能达成一致的作战计划。

2.CAP指标

2.1CAP理论

(1)一致性(Consistency)

概述:

一致性这个指标,描述的是分布式系统非常重要的一个特性,强调的是数据的一致。也就是说,在客户端看来,集群和单机在数据一致性上是一样的。

一致性的局限性:

不过集群毕竟不是单机,当发生分区故障的时候,有时不能仅仅因为节点间出现了通讯问题,节点中的数据会不一致,就拒绝写入新数据,之后在客户端查询数据时,就一直返回给客户端出错信息。这句话怎么理解呢?我来举个例子。业务集群中的一些关键系统,比如名字路由系统,如果仅仅因为发生了分布故障,节点中的数据会不一致,集群就拒绝写入新的路由信息,之后,当客户端查询相关路由信息时,系统就一直返回给客户端出错信息,那么相关的服务都将因为获取不到指定路由信息而不可用、瘫痪,这可以说是灾难性的故障了。

(2)可用性(Availability)

可用性说的是任何来自客户端的请求,不管访问哪个节点,都能得到响应数据,但不保证是同一份最新数据。你也可以把可用性看作是分布式系统对访问本系统的客户端的另外一种承诺:我尽力给你返回数据,不会不响应你,但是我不保证每个节点给你的数据都是最新的。这个指标强调的是服务可用,但不保证数据的一致。

(3)分区容错性(Partition Tolerance)

分区容错性说的是,当节点间出现任意数量的消息丢失或高延迟的时候,系统仍然可以继续提供服务。也就是说,分布式系统在告诉访问本系统的客户端:不管我的内部出现什么样的数据同步问题,我会一直运行,提供服务。这个指标,强调的是集群对分区故障的容错能力。

2.2CAP 不可能三角

CAP 不可能三角说的是对于一个分布式系统而言,一致性(Consistency)、可用性(Availability)、分区容错性(Partition Tolerance)3 个指标不可兼得,只能在 3 个指标中选择 2 个。



我们都知道,只要有网络交互就一定会有延迟和数据丢失,而这种状况我们必须接受,还必须保证系统不能挂掉。所以就像我上面提到的,节点间的分区故障是必然发生的。也就是说,分区容错性(P)是前提,是必须要保证的。

现在就只剩下一致性(C)和可用性(A)可以选择了:要么选择一致性,保证数据绝对一致;要么选择可用性,保证服务可用。那么 CP 和 AP 的含义是什么呢? 当选择了一致性(C)的时候,如果因为消息丢失、延迟过高发生了网络分区,部分节点无法保证特定信息是最新的,那么这个时候,当集群节点接收到来自客户端的写请求时,因为无法保证所有节点都是最新信息,所以系统将返回写失败错误,也就是说集群 拒绝新数据写入。当选择了可用性(A)的时候,系统将始终处理客户端的查询,返回特定信息,如果发生 了网络分区,一些节点将无法返回最新的特定信息,它们将返回自己当前的相对新的信息。

拜占庭将军问题与CAP的更多相关文章

  1. 一致性hash理解、拜占庭将军问题解读和CAP理论总结

    一致性hash理解 白话概述: 比如说存储图片,有10台服务器用来存储,对图片名进行hash(pic_name)%10得到的值就是图片存放的服务器序号.这是正常的hash算法分散图片存储.但是有一天, ...

  2. [区块链] 拜占庭将军问题 [BFT]

    背景: 拜占庭将军问题很多人可能听过,但不知道具体是什么意思.那么究竟什么是拜占庭将军问题呢? 本文从最通俗的故事讲起,并对该问题进行抽象,并告诉大家拜占庭将军问题为什么在区块链领域作为一个重点研究问 ...

  3. 两将军问题、拜占庭将军问题、TCP三路握手过程的联系

    2015年初时产生了一个疑问:基于不可靠的通信链路,为什么在两将军问题中永远无法达到共识,而在TCP三路握手中可以? 今天抽出了一些时间进行研究发现,实际上TCP三路握手也不是完全可靠的,只是一个近似 ...

  4. (转)从拜占庭将军问题谈谈为什么pow是目前最好的共识机制

    我们知道基于区块链技术现在有很多的共识机制,包括不限于POW,POS,DPOS,PBFT……,我先不说为什么我最认可POW,我们先来看看著名的拜占庭将军问题: 拜占庭帝国即中世纪的土耳其,拥有巨大的财 ...

  5. 拜占庭将军问题(Byzantine Generals Problem),一个关于分布式系统容错问题故事

    拜占庭将军问题(Byzantine Generals Problem),一个关于分布式系统容错问题故事 背景:拜占庭帝国派出10支军队,去包围进攻一个强大的敌人,至少6支军队同时进攻才能攻下敌国. 难 ...

  6. [转载]拜占庭问题深入讨论 from http://bitkan.com/news/topic/14011

    拜占庭将军问题深入探讨 了解过比特币和区块链的人,多少都听说过拜占庭将军问题,或听说过比特币(或区块链)的一个重要成就正是解决了拜占庭将军问题.但真正明白这个问题的人并不多,甚至知道这个问题实质的人都 ...

  7. 实用拜占庭容错算法PBFT

    实用拜占庭容错算法PBFT 实用拜占庭容错算法PBFT 96 乔延宏 2017.06.19 22:58* 字数 1699 阅读 4972评论 0喜欢 11 分布式架构遭遇的问题 分布式架构会遭遇到以下 ...

  8. 一文读懂实用拜占庭容错(PBFT)算法

        在区块链中有一个著名的问题,就是拜占庭将军问题,对于拜占庭将军问题,网上的文章已经多得不要不要了,今天和大家分享的是其相关的实用拜占庭容错算法,一起来看看吧. 实用拜占庭容错算法(Practi ...

  9. 区块链共识算法 PBFT(拜占庭容错)、PAXOS、RAFT简述

    共识算法 区块链中最重要的便是共识算法,比特币使用的是POS(Proof of Work,工作量证明),以太币使用的是POS(Proof of Stake,股权证明)使得算理便的不怎么重要了,而今PO ...

  10. 【PBFT】拜占庭容错

    共识机制堪称区块链的核心.我们知道,EOS.Hyperledger以及Stellar等著名的项目,都采用了BFT(拜占庭容错)共识机制,那么,BFT到底是什么鬼?和其它共识机制相比,又有什么优势和特点 ...

随机推荐

  1. 消息队列之RabbitMQ介绍与运用

    RabbitMQ 说明 本章,我们主要从RabbitMQ简介.RabbitMQ安装.RabbitMQ常用命令.RabbitMQ架构模式.RabbitMQ使用.Quick.RabbitMQPlus的使用 ...

  2. Mockito使用方法(Kotlin)

    一.为什么要使用Mockito 1.实际案例 1.1 遇到的问题 对于经常维护的项目,经常遇到一个实际问题:需求不停改变,导致架构经常需要修改某些概念的定义. 对于某些十分基础又十分常用的概念,常常牵 ...

  3. Scrapy 之 docker splash

    Scrapy 之 docker splash 1. ubuntu 安装docker 命令 curl -sSL https://get.daocloud.io/docker | sh 或者 curl - ...

  4. GY91(MPU9250 + BMP280)惯性传感器开发指南

    目录 参考资料 I2C 设备ID 关键数据读取 MPU6500:读取加速度数据&换算单位 BMP280: 读取温度和气压信息 & 单位换算 推荐库 参考资料 参考资料说明: 用户手册时 ...

  5. Day14 note1

    package com.oop.demo06;public class Person { public void run(){ System.out.println("run"); ...

  6. 「浙江理工大学ACM入队200题系列」问题 B: 零基础学C/C++12——求平均值

    本题是浙江理工大学ACM入队200题第二套中的B题 我们先来看一下这题的题面. 由于是比较靠前的题目,这里插一句.各位新ACMer朋友们,请一定要养成仔细耐心看题的习惯,尤其是要利用好输入和输出样例. ...

  7. 聊聊mysql的事务

    今天来聊聊事务的四大特性以及其实现原理,需结合之前写的mysql是如何实现mvcc的来理解,因为大多数的实现都是基于mvcc的,理论介绍完后会通过实例来演示mvcc又是如何实现这些隔离级别的 事务的四 ...

  8. 【云原生 · Docker】Docker简介及基本组件

    [云原生·Docker]Docker简介及基本组件 1.Docker简介 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linu ...

  9. 硬核!Apache Hudi Schema演变深度分析与应用

    1.场景需求 在医疗场景下,涉及到的业务库有几十个,可能有上万张表要做实时入湖,其中还有某些库的表结构修改操作是通过业务人员在网页手工实现,自由度较高,导致整体上存在非常多的新增列,删除列,改列名的情 ...

  10. windows环境变量修改器

    软件及源码 前言 我一直再用win7的系统,当更改path环境变量的时候很难受, 就只能看到一段,然后前面有啥后面有啥都看不到,而且来回调整优先级的时候需要剪切粘贴,主要就是来回调节优先级特别麻烦.所 ...