Golang只有二十五个系统保留关键字,二十几个系统内置函数,加起来只有五十个左右需要记住的关键字,纵观编程宇宙,无人能出其右。其中还有一些保留关键字属于“锦上添花”,什么叫锦上添花?就是从表面上看,就算没有,也无伤大雅,不影响业务或者逻辑的实现,比如lambda表达式之类,没有也无所谓,但在初始化数据结构的时候,我们无法避免地,会谈及两个内置函数:New和Make。

New函数

假设声明一个变量:

package main  

import "fmt"  

func main() {  

	var a string  

	fmt.Println(a)
fmt.Println(&a) }

系统返回:

 0x14000090210

这里我们使用var关键字声明了一个数据类型是字符串的变量a,然后没有做任何赋值操作,于是a的默认值变为系统的零值,也就是空,a的内存地址已经做好了指向,以便存储a将来的值。

下面开始赋值:

package main  

import "fmt"  

func main() {  

	var a string
a = "ok"
fmt.Println(a)
fmt.Println(&a) }

系统返回:

ok
0x14000104210

可以看到a的值和内存地址都发生了改变,整个初始化过程,我们并没有使用new函数

下面我们把数据类型换成指针:

package main  

import "fmt"  

func main() {  

	var a *string  

	fmt.Println(a)
fmt.Println(&a) }

系统返回:

<nil>
0x140000a4018

可以看到由于数据类型换成了指针,零值变成了nil

接着像字符串数据类型一样进行赋值操作:

package main  

import "fmt"  

func main() {  

	var a *string  

	*a = "ok"  

	fmt.Println(*a)
fmt.Println(&a) }

系统返回:

panic: runtime error: invalid memory address or nil pointer dereference

是的,空指针异常,为什么?因为指针是一个引用类型,对于引用类型来说,系统不仅需要我们要声明它,还要为它分配内存空间,否则我们赋值的变量就没地方放,这里系统没法为nil分配内存空间,所以没有内存空间就没法赋值。

而像字符串这种值类型就不会有这种烦恼,因为值类型的声明不需要我们分配内存空间,系统会默认为其分配,为什么?因为值类型的零值是一个具体的值,而不是nil,比如整形的零值是0,字符串的零值是空,空不是nil,所以就算是空,也可以赋值。

那引用类型就没法赋值了?

package main  

import "fmt"  

func main() {  

	var a *string
a = new(string)
*a = "ok" fmt.Println(*a)
fmt.Println(&a) }

系统返回:

ok
0x14000126018

这里我们使用了new函数,它正是用于分配内存,第一个参数接收一个类型而不是一个值,函数返回一个指向该类型内存地址的指针,同时把分配的内存置为该类型的零值。

换句话说,new函数可以帮我们做之前系统自动为值类型数据类型做的事。

当然,new函数不仅仅能够为系统的基本类型的引用分配内存,也可以为自定义数据类型的引用分配内存:

package main  

package main  

import "fmt"  

func main() {  

	type Human struct {
name string
age int
}
var human *Human
human = new(Human)
human.name = "张三"
fmt.Println(*human)
fmt.Println(&human) }

系统返回:

{张三 0}
0x1400011c018

这里我们自定义了一种人类的结构体类型,然后声明该类型的指针,由于指针是引用类型,所以必须使用new函数为其分配内存,然后,才能对该引用的结构体属性进行赋值。

说白了,new函数就是为了解决引用类型的零值问题,nil算不上是真正意义上的零值,所以需要new函数为其“仙人指路”。

Make函数

make函数从功能层面上讲,和new函数是一致的,也是用于内存的分配,但它只能为切片slice,字典map以及通道channel分配内存,并返回一个初始化的值。

这显然有些矛盾了,既然已经有了new函数,并且new函数可以为引用数据类型分配内存,而切片、字典和通道不也是引用类型吗?

大家既然都是引用类型,为什么不直接使用new函数呢?

package main  

import "fmt"  

func main() {
a := *new([]int)
fmt.Printf("%T, %v\n", a, a == nil) b := *new(map[string]int)
fmt.Printf("%T, %v\n", b, b == nil) c := *new(chan int)
fmt.Printf("%T, %v\n", c, c == nil)
}

程序返回:

[]int, true
map[string]int, true
chan int, true

虽然new函数也可以为切片、字典和通道分配内存,但没有意义,因为它分配以后的地址还是nil:


package main import "fmt" func main() {
a := *new([]int)
fmt.Printf("%T, %v\n", a, a == nil) b := *new(map[string]int)
fmt.Printf("%T, %v\n", b, b == nil) c := *new(chan int)
fmt.Printf("%T, %v\n", c, c == nil) b["123"] = 123 fmt.Println(b)
}

这里使用new函数初始化以后,为字典变量b赋值,系统报错:

panic: assignment to entry in nil map

提示无法为nil的字典赋值,所以这就是make函数存在的意义:


package main import "fmt" func main() {
a := *new([]int)
fmt.Printf("%T, %v\n", a, a == nil) b := make(map[string]int)
fmt.Printf("%T, %v\n", b, b == nil) c := *new(chan int)
fmt.Printf("%T, %v\n", c, c == nil) b["123"] = 123 fmt.Println(b)
}

这里字典b使用make函数进行初始化之后,就可以为b进行赋值了。

程序返回:

[]int, true
map[string]int, false
chan int, true
map[123:123]

这也是make和new的区别,make可以为这三种类型分配内存,并且设置好其对应基本数据类型的零值,所以只要记住切片、字典和通道声明后需要赋值的时候,需要使用make函数为其先分配内存空间。

不用New或者Make会怎么样

有人会说,为什么非得纠结分配内存的问题?用海象操作符不就可以直接赋值了吗?

// example1.go
package main import "fmt" func main() { a := map[int]string{}
fmt.Printf("%T, %v\n", a, a == nil) a[1] = "ok" fmt.Println(a) }

程序返回:

map[int]string, false
map[1:ok]

没错,就算没用make函数,我们也可以“人为”的给字典分配内存,因为海象操作符其实是声明加赋值的连贯操作,后面的空字典就是在为变量申请内存空间。

但为什么系统还要保留new和make函数呢?事实上,这是一个分配内存的时机问题,声明之后,没有任何规定必须要立刻赋值,赋值后的变量会消耗系统的内存资源,所以声明以后并不分配内存,而是在适当的时候再分配,这也是new和make的意义所在,所谓千石之弓,引而不发,就是这个道理。

结语

new和make函数都可以为引用类型分配内存,起到“仙人指路”的作用,变量声明后“引而不发”就是使用它们的时机,make函数作用于创建 slice、map 和 channel 等内置的数据结构,而 new函数作用是为类型申请内存空间,并返回指向内存地址的指针。

仙人指路,引而不发,Go lang1.18入门精炼教程,由白丁入鸿儒,Golang中New和Make函数的使用背景和区别EP16的更多相关文章

  1. 延宕执行,妙用无穷,Go lang1.18入门精炼教程,由白丁入鸿儒,Golang中defer关键字延迟调用机制使用EP17

    先行定义,延后执行.不得不佩服Go lang设计者天才的设计,事实上,defer关键字就相当于Python中的try{ ...}except{ ...}finally{...}结构设计中的finall ...

  2. 清源正本,鉴往知来,Go lang1.18入门精炼教程,由白丁入鸿儒,Golang中引用类型是否进行引用传递EP18

    开篇明义,Go lang中从来就不存在所谓的"引用传递",从来就只有一种变量传递方式,那就是值传递.因为引用传递的前提是存在"引用变量",但是Go lang中从 ...

  3. 你有对象类,我有结构体,Go lang1.18入门精炼教程,由白丁入鸿儒,go lang结构体(struct)的使用EP06

    再续前文,在面向对象层面,Python做到了超神:万物皆为对象,而Ruby,则干脆就是神:飞花摘叶皆可对象.二者都提供对象类操作以及继承的方式为面向对象张目,但Go lang显然有一些特立独行,因为它 ...

  4. 百亿数据百亿花, 库若恒河沙复沙,Go lang1.18入门精炼教程,由白丁入鸿儒,Go lang数据库操作实践EP12

    Golang可以通过Gorm包来操作数据库,所谓ORM,即Object Relational Mapping(数据关系映射),说白了就是通过模式化的语法来操作数据库的行对象或者表对象,对比相对灵活繁复 ...

  5. 层次分明井然有条,Go lang1.18入门精炼教程,由白丁入鸿儒,Go lang包管理机制(package)EP10

    Go lang使用包(package)这种概念元素来统筹代码,所有代码功能上的可调用性都定义在包这个级别,如果我们需要调用依赖,那就"导包"就行了,无论是内部的还是外部的,使用im ...

  6. 兔起鹘落全端涵盖,Go lang1.18入门精炼教程,由白丁入鸿儒,全平台(Sublime 4)Go lang开发环境搭建EP00

    Go lang,为并发而生的静态语言,源于C语言又不拘泥于性能,高效却不流于古板,Python灵活,略输性能,Java严谨,稍逊风骚.君不见各大厂牌均纷纷使用Go lang对自己的高并发业务进行重构, ...

  7. 化整为零优化重用,Go lang1.18入门精炼教程,由白丁入鸿儒,go lang函数的定义和使用EP07

    函数是基于功能或者逻辑进行聚合的可复用的代码块.将一些复杂的.冗长的代码抽离封装成多个代码片段,即函数,有助于提高代码逻辑的可读性和可维护性.不同于Python,由于 Go lang是编译型语言,编译 ...

  8. 因势而变,因时而动,Go lang1.18入门精炼教程,由白丁入鸿儒,Go lang泛型(generic)的使用EP15

    事实上,泛型才是Go lang1.18最具特色的所在,但为什么我们一定要拖到后面才去探讨泛型?类比的话,我们可以想象一下给小学一年级的学生讲王勃的千古名篇<滕王阁序>,小学生有多大的概率可 ...

  9. 巨细靡遗流程控制,Go lang1.18入门精炼教程,由白丁入鸿儒,Go lang流程结构详解EP09

    流程结构就是指程序逻辑到底怎么执行,进而言之,程序执行逻辑的顺序.众所周知,程序整体都是自上由下执行的,但有的时候,又不仅仅是从上往下执行那么简单,大体上,Go lang程序的流程控制结构一共有三种: ...

随机推荐

  1. RPA应用场景-定点取数

    场景概述定点取数 所涉系统名称业务系统,Excel 人工操作(时间/次) 8 小时 所涉人工数量 2 操作频率实时 场景流程 1.从业务系统中拉取指定字段值的数据填入Excel: 2.将Excel每隔 ...

  2. windows平台编译CEF支持H264(MP3、MP4)超详细

    编译目标(如何确定目标定版本请查看:BranchesAndBuilding) CEF Branch:4664 CEF Commit:fe551e4 Chromium Version:96.0.4664 ...

  3. 面试官:Redis 过期删除策略和内存淘汰策略有什么区别?

    作者:小林coding 计算机八股文网站:https://xiaolincoding.com 大家好,我是小林. Redis 的「内存淘汰策略」和「过期删除策略」,很多小伙伴容易混淆,这两个机制虽然都 ...

  4. .NET ORM框架HiSql实战-第三章-使用自定义编号生成【申请编号】

    一.引言 上一篇.NET ORM框架HiSql实战-第二章-使用Hisql实现菜单管理(增删改查) 中菜单编号采用的是雪花ID,生成的编号无法自定义.比如本系统的一个申请业务,需要按前缀+日期+流水号 ...

  5. mesi--cpu内存一致性协议

    目录 cpu缓存一致性问题 mesi协议 mesi协议4种状态,及状态转换 模拟工具演示 cpu缓存一致性问题 一个服务器中有多个核,每个核中有多个cpu,每个cpu有多个线程.缓存最少分为3级,1级 ...

  6. CMU15445 (Fall 2019) 之 Project#3 - Query Execution 详解

    前言 经过前面两个实验的铺垫,终于到了给数据库系统添加执行查询计划功能的时候了.给定一条 SQL 语句,我们可以将其中的操作符组织为一棵树,树中的每一个父节点都能从子节点获取 tuple 并处理成操作 ...

  7. 传统 API 管理与测试过程正面临严峻的挑战

    随着测试左移思想的引入, API (应用程序编程接口)经济的飞速增长导致对 API 管理平台的需求相应增加.越来越多的企业注重并关注接口测试.单纯的做接口测试或者做好接口测试的本质工作其实并不复杂: ...

  8. DDL_操作数据库_创建&查询和DDL_操作数据库_修改&删除&使用

    DDL操作数据库.表 1.操作数据库:CRUD C(Create):创建 创建数据库: create database 数据库名称: 创建数据库判断不存在再创建 create database if ...

  9. python获取本机的安装所有应用( Windows)

    Windows获取本机的安装所有应用 采用操作注册表的方式,理论上其他可通过操作注册表方式的动作均可 import winreg def get_window_software(hive, flag) ...

  10. linux安全之网络设置

    可以通过/etc/sysctl.conf控制和配置Linux内核及网络设置. # 避免放大攻击 net.ipv4.icmp_echo_ignore_broadcasts = 1 # 开启恶意icmp错 ...