[CF1527D] MEX Tree (lca)
题面
给你一棵
n
n
n 个结点的树,对于所有的
k
∈
[
0
,
n
]
k\in[0,n]
k∈[0,n] ,求出
M
E
X
=
k
{\rm MEX}=k
MEX=k 的路径数量。
一条路径的
M
E
X
\rm MEX
MEX 定义为该路径上没出现的最小结点编号(编号从
0
0
0 到
n
−
1
n-1
n−1)。
1
≤
n
≤
2
e
5
1\leq n\leq 2e5
1≤n≤2e5,多组数据。
题解
一条路径的
M
E
X
\rm MEX
MEX 恰好等于
k
k
k 的充要条件是
- 结点
0
0
0 到
k
−
1
k-1
k−1 都出现在路径上。
- 结点
k
k
k 没有出现在路径上。
我们先想想怎么求
0
0
0 到
i
i
i 都出现在路径上的路径个数,令其为
f
(
i
)
f(i)
f(i)。
如果这
i
+
1
i+1
i+1 个点在树上没办法由一条路径经过(形成的虚树不是一条链)那么答案一定为 0,并且
f
(
i
+
1
)
f(i+1)
f(i+1) 直到
f
(
n
)
f(n)
f(n) 的值也都是 0 。在这之前,如果包含它们的最短路径两端是
A
A
A 和
B
B
B(不妨令它们没有祖先关系),那么
f
(
i
)
f(i)
f(i) 就为
A
A
A 端子树大小 ×
B
B
B 端子树大小。
M
E
X
\rm MEX
MEX 等于
k
k
k 的答案不难发现可以用一个小容斥算出:
f
(
k
−
1
)
−
f
(
k
)
f(k-1)-f(k)
f(k−1)−f(k) 。
然后,难点就剩计算
f
(
i
)
f(i)
f(i) 了。首先不妨令
f
(
−
1
)
=
n
∗
(
n
−
1
)
2
f(-1)=\cfrac{n*(n-1)}{2}
f(−1)=2n∗(n−1)
接着我们发现,如果把 0 当作根的话,一切都变得明朗。从
0
0
0 到
i
i
i 形成的虚树一定都经过根,那么我们用
A
A
A 和
B
B
B 两个变量存路径的两端就足够了(初始为 0)。从小到大依次加入点,如果出现加入的点
x
x
x 分别与
A
A
A 或
B
B
B 的最近公共祖先不是
1
,
A
,
B
,
x
1,A,B,x
1,A,B,x 中任何一个的话,那当前的
f
(
i
)
f(i)
f(i) 以及后面的都是 0 了,就不用继续算了。否则的话,就讨论讨论,看怎么更新
A
A
A 和
B
B
B 。
计算
f
(
i
)
f(i)
f(i) 的时候,如果
A
A
A 和
B
B
B 都是 0,那么就是经过 0 的路径数,提前处理一下即可;如果
A
A
A 和
B
B
B 其中一个是 0(假设是
A
A
A),那么先求出
B
B
B 往上走刚好走到 0 的儿子的那个点
B
′
B'
B′,答案就是
(
n
−
s
i
z
[
B
′
]
)
×
s
i
z
[
B
]
(n-siz[B'])\times siz[B]
(n−siz[B′])×siz[B];如果
A
A
A 和
B
B
B 都大于 0 的话,答案自然是
s
i
z
[
A
]
×
s
i
z
[
B
]
siz[A]\times siz[B]
siz[A]×siz[B]。
具体实现有点细节多。复杂度
O
(
n
log
n
)
O(n\log n)
O(nlogn)。
CODE
#include<cstdio>
#include<vector>
#include<cmath>
#include<map>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 300005
#define DB double
#define LL long long
#define ENDL putchar('\n')
#define lowbit(x) ((-x) & (x))
LL read() {
LL f=1,x=0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
LL as[MAXN];
vector<int> g[MAXN];
int d[MAXN],dfn[MAXN],rr[MAXN],tim,siz[MAXN];
LL dp[MAXN];
int A,B,FLAG,f[MAXN][21];//18
void dfs(int x,int ff) {
d[x] = d[f[x][0] = ff] + 1;dp[x] = 0;siz[x] = 1;
dfn[x] = ++ tim;
for(int i = 1;i <= 18;i ++) f[x][i] = f[f[x][i-1]][i-1];
for(int i = 0;i < (int)g[x].size();i ++) {
int y = g[x][i];
if(y != ff) {
dfs(y,x);
dp[x] += siz[x] *1ll* siz[y];
siz[x] += siz[y];
}
}rr[x] = tim;
return ;
}
int lca(int a,int b) {
if(d[a] < d[b]) swap(a,b);
if(d[a] > d[b]) {
for(int i = 18;i >= 0;i --) {
if(d[f[a][i]] >= d[b]) a = f[a][i];
}
}if(a == b) return a;
for(int i = 18;i >= 0;i --) {
if(f[a][i] != f[b][i]) {
a = f[a][i]; b = f[b][i];
}
}return f[a][0];
}
LL cal() {
if(!FLAG) return 0;
if(A > B) swap(A,B);
if(A == 1 && B == 1) return dp[1];
if(A == 1) {
int ft = B;
for(int i = 18;i >= 0;i --) {
if(d[f[ft][i]] > d[A]) ft = f[ft][i];
}
int nm1 = n - (rr[ft]-dfn[ft]+1);
return (rr[B]-dfn[B]+1) *1ll* nm1;
}
return (rr[B]-dfn[B]+1) *1ll* (rr[A]-dfn[A]+1);
}
void addp(int x) {
if(!FLAG) return ;
if(A > B) swap(A,B);
if(A == 1 && B == 1) B = x;
else if(A == 1) {
int lc = lca(x,B);
if(lc == 1) A = x;
else if(lc == B) B = x;
else if(lc != x) FLAG = 0;
}
else {
int lc1 = lca(A,x),lc2 = lca(B,x);
if(lc1 == A) A = x;
else if(lc2 == B) B = x;
else if((lc1 == x) || (lc2 == x)) return ;
else FLAG = 0;
}return ;
}
int main() {
int T = read();
while(T --) {
n = read();
tim = 0;A = B = FLAG = 1;
for(int i = 1;i <= n+1;i ++) {
g[i].clear(); as[i] = 0;
memset(f[i],0,sizeof(f[i]));
}
for(int i = 1;i < n;i ++) {
s = read()+1;o = read()+1;
g[s].push_back(o);
g[o].push_back(s);
}
dfs(1,0);
as[1] = n*1ll*(n-1)/2ll;
for(int i = 2;i <= n;i ++) {
LL ass = cal();
as[i-1] -= ass;
as[i] = ass;
addp(i);
}
LL ass = cal();
as[n] -= ass; as[n+1] = ass;
for(int i = 1;i <= n+1;i ++) {
printf("%lld ",as[i]);
}ENDL;
}
return 0;
}
[CF1527D] MEX Tree (lca)的更多相关文章
- 面试题6:二叉树最近公共节点(LCA)《leetcode236》
Lowest Common Ancestor of a Binary Tree(二叉树的最近公共父亲节点) Given a binary tree, find the lowest common an ...
- 洛谷P3379 【模板】最近公共祖先(LCA)
P3379 [模板]最近公共祖先(LCA) 152通过 532提交 题目提供者HansBug 标签 难度普及+/提高 提交 讨论 题解 最新讨论 为什么还是超时.... 倍增怎么70!!题解好像有 ...
- Device Tree(三):代码分析【转】
转自:http://www.wowotech.net/linux_kenrel/dt-code-analysis.html Device Tree(三):代码分析 作者:linuxer 发布于:201 ...
- 图论--最近公共祖先问题(LCA)模板
最近公共祖先问题(LCA)是求一颗树上的某两点距离他们最近的公共祖先节点,由于树的特性,树上两点之间路径是唯一的,所以对于很多处理关于树的路径问题的时候为了得知树两点的间的路径,LCA是几乎最有效的解 ...
- P3379 【模板】最近公共祖先(LCA)
P3379 [模板]最近公共祖先(LCA) 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询 ...
- 洛谷P3379 【模板】最近公共祖先(LCA)(dfs序+倍增)
P3379 [模板]最近公共祖先(LCA) 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询 ...
- 「LuoguP3379」 【模板】最近公共祖先(LCA)
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 洛谷——P3379 【模板】最近公共祖先(LCA)
P3379 [模板]最近公共祖先(LCA) 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询 ...
- luogo p3379 【模板】最近公共祖先(LCA)
[模板]最近公共祖先(LCA) 题意 给一个树,然后多次询问(a,b)的LCA 模板(主要参考一些大佬的模板) #include<bits/stdc++.h> //自己的2点:树的邻接链表 ...
随机推荐
- 2021.03.20【NOIP提高B组】模拟 总结
区间 DP 专场:愉快爆炸 T1 题目大意 有 \(n\) 个有颜色的块,连续 \(k\) 个相同颜色的就可以消掉 现在可以在任意位置插入任意颜色的方块,问最少插入多少个可以全部抵消 题解 先把连续的 ...
- Pytorch实现波阻抗反演
Pytorch实现波阻抗反演 1 引言 地震波阻抗反演是在勘探与开发期间进行储层预测的一项关键技术.地震波阻抗反演可消除子波影响,仅留下反射系数,再通过反射系数计算出能表征地层物性变化的物理参数.常用 ...
- Vue.js与ElementUI搭建无限级联层级表格组件
前言 今天,回老家了.第一件事就是回家把大屏安排上,写作的感觉太爽了,终于可以专心地写文章了.我们今天要做的项目是怎么样搭建一个无限级联层级表格组件,好了,多了不多说,赶快行动起来吧!项目一览 到底是 ...
- SAP Tree editor(树形结构)
SAP List Tree 效果 源代码 *&---------------------------------------------------------------------* *& ...
- Linux shell脚本算术运算和逻辑运算
算术运算 默认不支持算数运算.所以需要特定的语法来完成, shell进行算数运算的工具: let declare (())或$(())或$[] bc let: 格式: let var=算术表达式 例如 ...
- 【python基础】第04回 变量常量
本章内容概要 1. python 语法注释 2. python 语法之变量常量 3. python 基本数据类型(整型(int),浮点型(float),字符串(str)) 本章内容详解 1. pyth ...
- Linux YUM制作自己的yum repository
Linux YUM制作自己的yum repository 配置步骤: 1.通过网络发布自己的package目录 2.创建本地repository 3.配置自己的yum源 操作实现: 1 安装creat ...
- RS485 MODBUS RTU通信协议
1.RS485接口标准 RS485由RS232和RS422发展而来,弥补了抗干扰能力差.通信距离短.速率低的缺点,增加了多点.双向通信能力,即允许多个发送器连接在同一条主线上,同时增加了发送器的驱动能 ...
- JDBC:批处理
1.批处理: 当要执行某条SQL语句很多次时.例如,批量添加数据:使用批处理的效率要高的多. 2.如何实现批处理 实践: package com.dgd.test; import java.io.Fi ...
- 字节输入流_InputStream类&FileInputStream类介绍和字节输入流读取字节数据
java.io.InputStream:字节输入流 此抽象类是表示字节输入流的所有类的超类 定义了所有子类共性的方法: int read()从输入流中读取数据的下一个字节 int read(byte[ ...