[CF1527D] MEX Tree (lca)
题面
给你一棵
n
n
n 个结点的树,对于所有的
k
∈
[
0
,
n
]
k\in[0,n]
k∈[0,n] ,求出
M
E
X
=
k
{\rm MEX}=k
MEX=k 的路径数量。
一条路径的
M
E
X
\rm MEX
MEX 定义为该路径上没出现的最小结点编号(编号从
0
0
0 到
n
−
1
n-1
n−1)。
1
≤
n
≤
2
e
5
1\leq n\leq 2e5
1≤n≤2e5,多组数据。
题解
一条路径的
M
E
X
\rm MEX
MEX 恰好等于
k
k
k 的充要条件是
- 结点
0
0
0 到
k
−
1
k-1
k−1 都出现在路径上。
- 结点
k
k
k 没有出现在路径上。
我们先想想怎么求
0
0
0 到
i
i
i 都出现在路径上的路径个数,令其为
f
(
i
)
f(i)
f(i)。
如果这
i
+
1
i+1
i+1 个点在树上没办法由一条路径经过(形成的虚树不是一条链)那么答案一定为 0,并且
f
(
i
+
1
)
f(i+1)
f(i+1) 直到
f
(
n
)
f(n)
f(n) 的值也都是 0 。在这之前,如果包含它们的最短路径两端是
A
A
A 和
B
B
B(不妨令它们没有祖先关系),那么
f
(
i
)
f(i)
f(i) 就为
A
A
A 端子树大小 ×
B
B
B 端子树大小。
M
E
X
\rm MEX
MEX 等于
k
k
k 的答案不难发现可以用一个小容斥算出:
f
(
k
−
1
)
−
f
(
k
)
f(k-1)-f(k)
f(k−1)−f(k) 。
然后,难点就剩计算
f
(
i
)
f(i)
f(i) 了。首先不妨令
f
(
−
1
)
=
n
∗
(
n
−
1
)
2
f(-1)=\cfrac{n*(n-1)}{2}
f(−1)=2n∗(n−1)
接着我们发现,如果把 0 当作根的话,一切都变得明朗。从
0
0
0 到
i
i
i 形成的虚树一定都经过根,那么我们用
A
A
A 和
B
B
B 两个变量存路径的两端就足够了(初始为 0)。从小到大依次加入点,如果出现加入的点
x
x
x 分别与
A
A
A 或
B
B
B 的最近公共祖先不是
1
,
A
,
B
,
x
1,A,B,x
1,A,B,x 中任何一个的话,那当前的
f
(
i
)
f(i)
f(i) 以及后面的都是 0 了,就不用继续算了。否则的话,就讨论讨论,看怎么更新
A
A
A 和
B
B
B 。
计算
f
(
i
)
f(i)
f(i) 的时候,如果
A
A
A 和
B
B
B 都是 0,那么就是经过 0 的路径数,提前处理一下即可;如果
A
A
A 和
B
B
B 其中一个是 0(假设是
A
A
A),那么先求出
B
B
B 往上走刚好走到 0 的儿子的那个点
B
′
B'
B′,答案就是
(
n
−
s
i
z
[
B
′
]
)
×
s
i
z
[
B
]
(n-siz[B'])\times siz[B]
(n−siz[B′])×siz[B];如果
A
A
A 和
B
B
B 都大于 0 的话,答案自然是
s
i
z
[
A
]
×
s
i
z
[
B
]
siz[A]\times siz[B]
siz[A]×siz[B]。
具体实现有点细节多。复杂度
O
(
n
log
n
)
O(n\log n)
O(nlogn)。
CODE
#include<cstdio>
#include<vector>
#include<cmath>
#include<map>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 300005
#define DB double
#define LL long long
#define ENDL putchar('\n')
#define lowbit(x) ((-x) & (x))
LL read() {
LL f=1,x=0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
LL as[MAXN];
vector<int> g[MAXN];
int d[MAXN],dfn[MAXN],rr[MAXN],tim,siz[MAXN];
LL dp[MAXN];
int A,B,FLAG,f[MAXN][21];//18
void dfs(int x,int ff) {
d[x] = d[f[x][0] = ff] + 1;dp[x] = 0;siz[x] = 1;
dfn[x] = ++ tim;
for(int i = 1;i <= 18;i ++) f[x][i] = f[f[x][i-1]][i-1];
for(int i = 0;i < (int)g[x].size();i ++) {
int y = g[x][i];
if(y != ff) {
dfs(y,x);
dp[x] += siz[x] *1ll* siz[y];
siz[x] += siz[y];
}
}rr[x] = tim;
return ;
}
int lca(int a,int b) {
if(d[a] < d[b]) swap(a,b);
if(d[a] > d[b]) {
for(int i = 18;i >= 0;i --) {
if(d[f[a][i]] >= d[b]) a = f[a][i];
}
}if(a == b) return a;
for(int i = 18;i >= 0;i --) {
if(f[a][i] != f[b][i]) {
a = f[a][i]; b = f[b][i];
}
}return f[a][0];
}
LL cal() {
if(!FLAG) return 0;
if(A > B) swap(A,B);
if(A == 1 && B == 1) return dp[1];
if(A == 1) {
int ft = B;
for(int i = 18;i >= 0;i --) {
if(d[f[ft][i]] > d[A]) ft = f[ft][i];
}
int nm1 = n - (rr[ft]-dfn[ft]+1);
return (rr[B]-dfn[B]+1) *1ll* nm1;
}
return (rr[B]-dfn[B]+1) *1ll* (rr[A]-dfn[A]+1);
}
void addp(int x) {
if(!FLAG) return ;
if(A > B) swap(A,B);
if(A == 1 && B == 1) B = x;
else if(A == 1) {
int lc = lca(x,B);
if(lc == 1) A = x;
else if(lc == B) B = x;
else if(lc != x) FLAG = 0;
}
else {
int lc1 = lca(A,x),lc2 = lca(B,x);
if(lc1 == A) A = x;
else if(lc2 == B) B = x;
else if((lc1 == x) || (lc2 == x)) return ;
else FLAG = 0;
}return ;
}
int main() {
int T = read();
while(T --) {
n = read();
tim = 0;A = B = FLAG = 1;
for(int i = 1;i <= n+1;i ++) {
g[i].clear(); as[i] = 0;
memset(f[i],0,sizeof(f[i]));
}
for(int i = 1;i < n;i ++) {
s = read()+1;o = read()+1;
g[s].push_back(o);
g[o].push_back(s);
}
dfs(1,0);
as[1] = n*1ll*(n-1)/2ll;
for(int i = 2;i <= n;i ++) {
LL ass = cal();
as[i-1] -= ass;
as[i] = ass;
addp(i);
}
LL ass = cal();
as[n] -= ass; as[n+1] = ass;
for(int i = 1;i <= n+1;i ++) {
printf("%lld ",as[i]);
}ENDL;
}
return 0;
}
[CF1527D] MEX Tree (lca)的更多相关文章
- 面试题6:二叉树最近公共节点(LCA)《leetcode236》
Lowest Common Ancestor of a Binary Tree(二叉树的最近公共父亲节点) Given a binary tree, find the lowest common an ...
- 洛谷P3379 【模板】最近公共祖先(LCA)
P3379 [模板]最近公共祖先(LCA) 152通过 532提交 题目提供者HansBug 标签 难度普及+/提高 提交 讨论 题解 最新讨论 为什么还是超时.... 倍增怎么70!!题解好像有 ...
- Device Tree(三):代码分析【转】
转自:http://www.wowotech.net/linux_kenrel/dt-code-analysis.html Device Tree(三):代码分析 作者:linuxer 发布于:201 ...
- 图论--最近公共祖先问题(LCA)模板
最近公共祖先问题(LCA)是求一颗树上的某两点距离他们最近的公共祖先节点,由于树的特性,树上两点之间路径是唯一的,所以对于很多处理关于树的路径问题的时候为了得知树两点的间的路径,LCA是几乎最有效的解 ...
- P3379 【模板】最近公共祖先(LCA)
P3379 [模板]最近公共祖先(LCA) 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询 ...
- 洛谷P3379 【模板】最近公共祖先(LCA)(dfs序+倍增)
P3379 [模板]最近公共祖先(LCA) 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询 ...
- 「LuoguP3379」 【模板】最近公共祖先(LCA)
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 洛谷——P3379 【模板】最近公共祖先(LCA)
P3379 [模板]最近公共祖先(LCA) 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询 ...
- luogo p3379 【模板】最近公共祖先(LCA)
[模板]最近公共祖先(LCA) 题意 给一个树,然后多次询问(a,b)的LCA 模板(主要参考一些大佬的模板) #include<bits/stdc++.h> //自己的2点:树的邻接链表 ...
随机推荐
- 2021.05.05【NOIP提高B组】模拟 总结
T1 给你一棵树,要求增加最少的边权是的从根到每一个叶子的长度相等 不能改变原有的最大长度 这是一个贪心:尽可能往深度小的边增加 先预处理出 \(mx_i\) 表示从 \(i\) 到叶子的最大长度 然 ...
- 七牛云创建存储空间并绑定自定义域名-https协议
七牛云创建存储空间并绑定自定义域名-https协议 一.准备 0.绑定自定义域名的前提:你起码拥有过一个备案过的域名[一级域名] 1.在七牛云创建一个存储空间 2.存储空间绑定自定义域名(cdn加速) ...
- 循环码、卷积码及其python实现
摘要:本文介绍了循环码和卷积码两种编码方式,并且,作者给出了两种编码方式的编码译码的python实现 关键字:循环码,系统编码,卷积码,python,Viterbi算法 循环码的编码译码 设 \(C\ ...
- tomcat JDK环境变量配置及tomcat多项目的配置
1.解压JDK tar xzf jdk-8u171-linux-i586.tar.gz -C /usr/local -->mv /usr/local/jdk1.8.0_171 /usr/loca ...
- 《ASP.NET Core 6框架揭秘》样章[200页/5章]
作为<ASP.NET Core 3 框架揭秘>的升级版,<ASP.NET Core 6框架揭秘>不仅针对ASP.NET Core 6的新特性进行了修订,并添加了若干原来没有的内 ...
- C语言指针-小结
1) 指针变量可以进行加减运算,但是指针变量的加减运算并不是加上或减去一个数,而是跟指针指向的数据类型有关,数据类型在系统中占了多少个字节,指针+1后就向后移动了多少个字节. 2) int *poin ...
- Selenium指定浏览器路径
ChromeOptions options = new ChromeOptions(); options.setBinary("C:\\Program Files (x86)\\Google ...
- Mac Sierra开启读写NTFS
查看卷标diskutil list sudo vim /etc/fstab,开启WinD盘符读写,添加如下: LABEL=WinD none ntfs rw,auto,nobrowse 磁盘工具重新挂 ...
- Assembly.GetManifestResourceStream为null
想把某个项目的某个文件夹里面的ini文件生成的时候顺便生成为网站和服务文件夹项目 string _path = Path.Combine(AppDomain.CurrentDomain.BaseDir ...
- 传统 API 管理与测试过程正面临严峻的挑战
随着测试左移思想的引入, API (应用程序编程接口)经济的飞速增长导致对 API 管理平台的需求相应增加.越来越多的企业注重并关注接口测试.单纯的做接口测试或者做好接口测试的本质工作其实并不复杂: ...