洛谷P4513 小白逛公园 (线段树)
这道题看起来像是线段树和最大子段和的结合,但这里求最大子段和不用dp,充分利用线段树递归的优势来处理。个人理解:线段树相当于把求整个区间的最大子段和的问题不断划分为很多个小问题,容易解决小问题,然后递归处理较大的问题(分治),所以这就可以用来解决。
在线段树中,除了左端点,右端点,新开4个域——ans,ml,mr,sum,其中sum为该区间的和,ans为该区间上的最大子段和,ml为必须包含左端点(以左端点为头)的最大子段和,mr为必须包含右端点(以右端点为尾)的最大子段和。
更新操作在up()中,应该容易看懂,需要思考的是查询操作,他返回的是一个结构体类型,该操作相当于针对某个询问的区间来更新结果,最后的query().ans也就是答案了
1 #include<bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int N=5e5+10;
5 int n,m;
6 struct node{
7 int l,r;
8 ll ml,mr,sum,ans;
9 }t[N<<2];
10
11 void up(int k){
12 t[k].sum=t[k<<1].sum+t[k<<1|1].sum;
13 t[k].ml=max(t[k<<1].ml,t[k<<1].sum+t[k<<1|1].ml);
14 t[k].mr=max(t[k<<1|1].mr,t[k<<1|1].sum+t[k<<1].mr);
15 t[k].ans=max(max(t[k<<1].ans,t[k<<1|1].ans),t[k<<1].mr+t[k<<1|1].ml);
16 }
17
18 void build(int k,int l,int r){
19 t[k].l=l,t[k].r=r;
20 if(l==r){
21 scanf("%lld",&t[k].sum);
22 t[k].ml=t[k].mr=t[k].ans=t[k].sum;
23 return ;
24 }
25 int mid=(l+r)>>1;
26 build(k<<1,l,mid);build(k<<1|1,mid+1,r);
27 up(k);
28 }
29
30 node query(int k,int l,int r){
31 if(t[k].l>=l && t[k].r<=r) return t[k];
32 int mid=(t[k].l+t[k].r)>>1;
33 if(r<=mid) return query(k<<1,l,r);
34 else if(l>mid) return query(k<<1|1,l,r);
35 else{
36 node t,a=query(k<<1,l,r),b=query(k<<1|1,l,r);
37 t.sum=a.sum+b.sum;
38 t.ml=max(a.ml,a.sum+b.ml);
39 t.mr=max(b.mr,b.sum+a.mr);
40 t.ans=max(max(a.ans,b.ans),a.mr+b.ml);//合并
41 return t;
42 }
43 }
44
45 void change(int k,int p,int x){//将p位置上的数改为x
46 if(t[k].l==t[k].r && t[k].l==p){
47 t[k].ml=t[k].mr=t[k].ans=t[k].sum=x;
48 return ;
49 }
50 int mid=(t[k].l+t[k].r)>>1;
51 if(p<=mid) change(k<<1,p,x);
52 else change(k<<1|1,p,x);
53 up(k);
54 }
55
56 int main(){
57 scanf("%d%d",&n,&m);
58 build(1,1,n);
59 while(m--){
60 int opt,a,b;
61 scanf("%d%d%d",&opt,&a,&b);
62 if(opt==1){
63 if(a>b) swap(a,b);
64 printf("%lld\n",query(1,a,b).ans);
65 }
66 else change(1,a,b);
67 }
68 }
洛谷P4513 小白逛公园 (线段树)的更多相关文章
- 洛谷 P4513 小白逛公园-区间最大子段和-分治+线段树区间合并(单点更新、区间查询)
P4513 小白逛公园 题目背景 小新经常陪小白去公园玩,也就是所谓的遛狗啦… 题目描述 在小新家附近有一条“公园路”,路的一边从南到北依次排着nn个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩 ...
- 2018.07.23 洛谷P4513 小白逛公园(线段树)
传送门 线段树常规操作了解一下. 单点修改维护区间最大连续和. 对于一个区间,维护区间从左端点开始的连续最大和,从右端点开始的连续最大和,整个区间最大和,区间和. 代码如下: #include< ...
- P4513 小白逛公园 (线段树)
题目链接 Solution 线段树是一门比较刁钻的手艺... 此题我们需要维护 \(4\) 个变量: \(amx\) 代表当前节点的最大值. \(lmx\) 代表当前节点以左端点为起点的区间最大值. ...
- 洛谷P4513 小白逛公园
区间最大子段和模板题.. 维护四个数组:prefix, suffix, sum, tree 假设当前访问节点为cur prefix[cur]=max(prefix[lson],sum[lson]+pr ...
- Bzoj 1756: Vijos1083 小白逛公园 线段树
1756: Vijos1083 小白逛公园 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1021 Solved: 326[Submit][Statu ...
- Vijos 1083 小白逛公园(线段树)
线段树,每个结点维护区间内的最大值M,和sum,最大前缀和lm,最大后缀和rm. 若要求区间为[a,b],则答案max(此区间M,左儿子M,右儿子M,左儿子rm+右儿子lm). ----------- ...
- [vijos]1083小白逛公园<线段树>
描述 小新经常陪小白去公园玩,也就是所谓的遛狗啦…在小新家附近有一条“公园路”,路的一边从南到北依次排着n个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩了. 一开始,小白就根据公园的风景给每个公 ...
- [日常摸鱼]Vijos1083小白逛公园-线段树
题意:单点修改,询问区间最大子段和,$n\leq 5e5$ 考虑分治的方法$O(nlogn)$求一次最大子段和的做法,我们是根据中点分成左右两个区间,那么整个区间的答案要么是左边答案,要么是右边答案, ...
- 洛谷 P3373 【模板】线段树 2
洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...
随机推荐
- 重写Object的equals方法和Objects的equals方法
Object类的equals方法默认比较的是两个对象的地址值,没有意义 所以我们需要重写equals方法,比较两个对象的属性值(name,age等等): 对象的属性值一样返回true否则返回false ...
- php date函数和首位带0问题
一.带零 echo date('Y-m-d'); 2012-08-08 二.不带零 echo date('Y-n-j'); 2012-8-8 以下为参数详解(转载): a - "am&quo ...
- YII XSS(跨站脚本攻击)
\Yii::$app->response->headers->add('X-XSS-Protection','0');//表示关闭YII的跨站脚本过滤//http://www.fro ...
- Dapr 与 NestJs ,实战编写一个 Pub & Sub 装饰器
Dapr 是一个可移植的.事件驱动的运行时,它使任何开发人员能够轻松构建出弹性的.无状态和有状态的应用程序,并可运行在云平台或边缘计算中,它同时也支持多种编程语言和开发框架.Dapr 确保开发人员专注 ...
- 英特尔CPU系列
1.酷睿(Core)系列,主要应用于管理 3D.高级视频和照片编辑,玩复杂游戏,享受高分辨率 4K 显示. 2.奔腾(PenTIum)系列,主要应用于借助功能丰富的处理器,加快便携式 2 合 1 电脑 ...
- Frida使用文档(一)安装、启动、运行、关闭
本文所有教程及源码.软件仅为技术研究.不涉及计算机信息系统功能的删除.修改.增加.干扰,更不会影响计算机信息系统的正常运行.不得将代码用于非法用途,如侵立删!企鹅:1033383881 Frida使用 ...
- Spherical类定义和实现
此类是一个全景摄像机视角,书上介绍了详细原理.直接给实现代码. 类声明: #pragma once #ifndef __SPHERICAL_HEADER__ #define __SPHERICAL_H ...
- MapReduce入门实战
MapReduce 思想 MapReduce 是 Google 提出的一个软件架构,用于大规模数据集的并行运算.概率"Map(映射)"和"Reduce(归约)" ...
- SpringBoot整合Redis实现常用功能
SpringBoot整合Redis实现常用功能 建议大小伙们,在写业务的时候,提前画好流程图,思路会清晰很多. 文末有解决缓存穿透和击穿的通用工具类. 1 登陆功能 我想,登陆功能是每个项目必备的功能 ...
- HDU2065 “红色病毒”问题 (指数型母函数经典板题)
题面 医学界发现的新病毒因其蔓延速度和Internet上传播的"红色病毒"不相上下,被称为"红色病毒",经研究发现,该病毒及其变种的DNA的一条单链中,胞嘧啶, ...