洛谷P4513 小白逛公园 (线段树)
这道题看起来像是线段树和最大子段和的结合,但这里求最大子段和不用dp,充分利用线段树递归的优势来处理。个人理解:线段树相当于把求整个区间的最大子段和的问题不断划分为很多个小问题,容易解决小问题,然后递归处理较大的问题(分治),所以这就可以用来解决。
在线段树中,除了左端点,右端点,新开4个域——ans,ml,mr,sum,其中sum为该区间的和,ans为该区间上的最大子段和,ml为必须包含左端点(以左端点为头)的最大子段和,mr为必须包含右端点(以右端点为尾)的最大子段和。
更新操作在up()中,应该容易看懂,需要思考的是查询操作,他返回的是一个结构体类型,该操作相当于针对某个询问的区间来更新结果,最后的query().ans也就是答案了
1 #include<bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int N=5e5+10;
5 int n,m;
6 struct node{
7 int l,r;
8 ll ml,mr,sum,ans;
9 }t[N<<2];
10
11 void up(int k){
12 t[k].sum=t[k<<1].sum+t[k<<1|1].sum;
13 t[k].ml=max(t[k<<1].ml,t[k<<1].sum+t[k<<1|1].ml);
14 t[k].mr=max(t[k<<1|1].mr,t[k<<1|1].sum+t[k<<1].mr);
15 t[k].ans=max(max(t[k<<1].ans,t[k<<1|1].ans),t[k<<1].mr+t[k<<1|1].ml);
16 }
17
18 void build(int k,int l,int r){
19 t[k].l=l,t[k].r=r;
20 if(l==r){
21 scanf("%lld",&t[k].sum);
22 t[k].ml=t[k].mr=t[k].ans=t[k].sum;
23 return ;
24 }
25 int mid=(l+r)>>1;
26 build(k<<1,l,mid);build(k<<1|1,mid+1,r);
27 up(k);
28 }
29
30 node query(int k,int l,int r){
31 if(t[k].l>=l && t[k].r<=r) return t[k];
32 int mid=(t[k].l+t[k].r)>>1;
33 if(r<=mid) return query(k<<1,l,r);
34 else if(l>mid) return query(k<<1|1,l,r);
35 else{
36 node t,a=query(k<<1,l,r),b=query(k<<1|1,l,r);
37 t.sum=a.sum+b.sum;
38 t.ml=max(a.ml,a.sum+b.ml);
39 t.mr=max(b.mr,b.sum+a.mr);
40 t.ans=max(max(a.ans,b.ans),a.mr+b.ml);//合并
41 return t;
42 }
43 }
44
45 void change(int k,int p,int x){//将p位置上的数改为x
46 if(t[k].l==t[k].r && t[k].l==p){
47 t[k].ml=t[k].mr=t[k].ans=t[k].sum=x;
48 return ;
49 }
50 int mid=(t[k].l+t[k].r)>>1;
51 if(p<=mid) change(k<<1,p,x);
52 else change(k<<1|1,p,x);
53 up(k);
54 }
55
56 int main(){
57 scanf("%d%d",&n,&m);
58 build(1,1,n);
59 while(m--){
60 int opt,a,b;
61 scanf("%d%d%d",&opt,&a,&b);
62 if(opt==1){
63 if(a>b) swap(a,b);
64 printf("%lld\n",query(1,a,b).ans);
65 }
66 else change(1,a,b);
67 }
68 }
洛谷P4513 小白逛公园 (线段树)的更多相关文章
- 洛谷 P4513 小白逛公园-区间最大子段和-分治+线段树区间合并(单点更新、区间查询)
P4513 小白逛公园 题目背景 小新经常陪小白去公园玩,也就是所谓的遛狗啦… 题目描述 在小新家附近有一条“公园路”,路的一边从南到北依次排着nn个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩 ...
- 2018.07.23 洛谷P4513 小白逛公园(线段树)
传送门 线段树常规操作了解一下. 单点修改维护区间最大连续和. 对于一个区间,维护区间从左端点开始的连续最大和,从右端点开始的连续最大和,整个区间最大和,区间和. 代码如下: #include< ...
- P4513 小白逛公园 (线段树)
题目链接 Solution 线段树是一门比较刁钻的手艺... 此题我们需要维护 \(4\) 个变量: \(amx\) 代表当前节点的最大值. \(lmx\) 代表当前节点以左端点为起点的区间最大值. ...
- 洛谷P4513 小白逛公园
区间最大子段和模板题.. 维护四个数组:prefix, suffix, sum, tree 假设当前访问节点为cur prefix[cur]=max(prefix[lson],sum[lson]+pr ...
- Bzoj 1756: Vijos1083 小白逛公园 线段树
1756: Vijos1083 小白逛公园 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1021 Solved: 326[Submit][Statu ...
- Vijos 1083 小白逛公园(线段树)
线段树,每个结点维护区间内的最大值M,和sum,最大前缀和lm,最大后缀和rm. 若要求区间为[a,b],则答案max(此区间M,左儿子M,右儿子M,左儿子rm+右儿子lm). ----------- ...
- [vijos]1083小白逛公园<线段树>
描述 小新经常陪小白去公园玩,也就是所谓的遛狗啦…在小新家附近有一条“公园路”,路的一边从南到北依次排着n个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩了. 一开始,小白就根据公园的风景给每个公 ...
- [日常摸鱼]Vijos1083小白逛公园-线段树
题意:单点修改,询问区间最大子段和,$n\leq 5e5$ 考虑分治的方法$O(nlogn)$求一次最大子段和的做法,我们是根据中点分成左右两个区间,那么整个区间的答案要么是左边答案,要么是右边答案, ...
- 洛谷 P3373 【模板】线段树 2
洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...
随机推荐
- SpringCloud微服务实战——搭建企业级开发框架(四十五):【微服务监控告警实现方式二】使用Actuator(Micrometer)+Prometheus+Grafana实现完整的微服务监控
无论是使用SpringBootAdmin还是使用Prometheus+Grafana都离不开SpringBoot提供的核心组件Actuator.提到Actuator,又不得不提Micrometer ...
- 基于图像识别框架Airtest的Windows项目自动化测试实践
写在前面 上一篇分享了<基于Sikuli GUI图像识别框架的PC客户端自动化测试实践>,但sikuli看起来怎么都像是上个世纪的界面风格,且功能过于简陋.而同样基于图像识别框架的Airt ...
- 5.27 NOI 模拟
\(T1\)约定 比较水的\(dp\)题 上午想到了用区间\(dp\)求解,复杂度\(O(n^5),\)貌似没开\(long\ long\)就爆掉了 正解还是比较好想的,直接枚举从何时互不影响然后转移 ...
- vue 将markdown字符串转html、修改主题、生成目录
前言 将 markdown 字符串转成 html 显示出来,同时把目录也提取出来一起显示.可以使用 marked 来读取 markdown 字符串解析成 html marked官网:https://m ...
- Java精进-手写持久层框架
前言 本文适合有一定java基础的同学,通过自定义持久层框架,可以更加清楚常用的mybatis等开源框架的原理. JDBC操作回顾及问题分析 学习java的同学一定避免不了接触过jdbc,让我们来回顾 ...
- JS的简介
JS式JavaScript的简称,它是一门弱语言,它可以实现让网页动起来 JS的构成 核心(ECMAScript) 文档对象模型(DOM)-- Document Object Module 浏览器对 ...
- 快速创建springboot项目,并进行增删改
创建普通maven项目,pom依赖如下 <parent> <artifactId>spring-boot-starter-parent</artifactId> & ...
- virsh edit 很慢 的bug
创建虚拟机,发现virsh edit很慢. strace的结果: 09:26:03 close(10) = -1 EBADF (Bad file descriptor)09:26:03 close(1 ...
- MySQL事务概念与流程和索引控制
MySQL事务概念与流程和索引控制 视图 1.什么是视图 我们在执行SQL语句其实就是对表进行操作,所得到的其实也是一张表,而我们需要经常对这些表进行操作,拼接什么的都会产生一张虚拟表,我们可以基于该 ...
- 哔哩哔哩b站提取Cookie方法,bilibili获取Cookie教程
大家可能对Cookie很陌生,甚至不知道是干嘛用,没关系,今天小编详细给大家讲解! Cookie是保存在客户端的纯文本文件,比如txt文件,所谓的客户端就是我们自己的本地电脑,当我们使用自己的电脑通过 ...