Luogu3919 【模板】可持久化数组(主席树)
主席树模板题,注意空间\((n+m) \log(n)\)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
//#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 20000007;
struct Chairman{
// space complexity : (n + m) * log(n)
int rt[1000007], T[N], L[N], R[N];
int treeIndex;
inline int Build(int l, int r){
int root = ++treeIndex;
if(l == r){
io >> T[root];
return root;
}
int mid = (l + r) >> 1;
L[root] = Build(l, mid);
R[root] = Build(mid + 1, r);
return root;
}
inline int Updata(int rt, int l, int r, int x, int w){
int root = ++treeIndex;
if(l == r){
T[root] = w;
return root;
}
L[root] = L[rt], R[root] = R[rt];
int mid = (l + r) >> 1;
if(x <= mid) L[root] = Updata(L[rt], l, mid, x ,w);
else R[root] = Updata(R[rt], mid + 1, r, x, w);
return root;
}
inline int Query(int rt, int l, int r, int x){
if(l == r) return T[rt];
int mid = (l + r) >> 1;
if(x <= mid) return Query(L[rt], l, mid, x);
else return Query(R[rt], mid + 1, r, x);
}
}t;
int main(){
t.treeIndex=0;
int n,m;
io >> n >> m;
t.Build(1,n);
t.rt[0]=1;
R(i,1,m){
int edition,opt;
io >> edition >> opt;
if(opt==1){
int pos, newValue;
io >> pos >> newValue;
t.rt[i] = t.Updata(t.rt[edition], 1, n, pos, newValue);
}
if(opt==2){
int pos;
io >> pos;
printf("%d\n", t.Query(t.rt[edition], 1, n, pos));
t.rt[i] = t.rt[edition];
}
}
return 0;
}

Luogu3919 【模板】可持久化数组(主席树)的更多相关文章
- P3919 (模板)可持久化数组 (主席树)
题目链接 Solution 主席树水题,连差分的部分都不需要用到. 直接用主席树的结构去存一下就好了. Code #include<bits/stdc++.h> #define mid ( ...
- 洛谷P3919 【模板】可持久化数组 [主席树]
题目传送门 可持久化数组 题目描述 如题,你需要维护这样的一个长度为 $N$ 的数组,支持如下几种操作 在某个历史版本上修改某一个位置上的值 访问某个历史版本上的某一位置的值 此外,每进行一次操作(对 ...
- LUOGU P3919 【模板】可持久化数组(主席树)
传送门 解题思路 给每一时刻建一棵线段树维护当前时刻的值,然后修改的时候直接修改,查询的时候直接查,记住查询完后一定要复制. 代码 #include<iostream> #include& ...
- luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树)(主席树)
luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include< ...
- BZOJ_1901_Zju2112 Dynamic Rankings_树状数组+主席树
BZOJ_1901_Zju2112 Dynamic Rankings_树状数组+主席树 题意: 给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i, ...
- ZOJ 2112 Dynamic Rankings(树状数组+主席树)
题意 \(n\) 个数,\(m\) 个操作,每次操作修改某个数,或者询问某个区间的第 \(K\) 小值. \(1 \leq n \leq 50000\) \(1 \leq m \leq 10000\) ...
- P1972 [SDOI2009]HH的项链[离线+树状数组/主席树/分块/模拟]
题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断地收集新的贝壳,因此,他的项链 ...
- zoj2112 树状数组+主席树 区间动第k大
Dynamic Rankings Time Limit: 10000MS Memory Limit: 32768KB 64bit IO Format: %lld & %llu Subm ...
- 【bzoj1146】[CTSC2008]网络管理Network 倍增LCA+dfs序+树状数组+主席树
题目描述 M公司是一个非常庞大的跨国公司,在许多国家都设有它的下属分支机构或部门.为了让分布在世界各地的N个部门之间协同工作,公司搭建了一个连接整个公司的通信网络.该网络的结构由N个路由器和N-1条高 ...
- 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树
题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...
随机推荐
- 论文解读(GCC)《GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training》
论文信息 论文标题:GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training论文作者:Jiezhong Qiu, Qibi ...
- 《C Primer Plus》第六版笔记--1~3章
目录 第一章 初识C语言 1 使用C语言的7个步骤 1.1 定义程序目标 1.2 设计程序(功能实现) 1.3 编写代码 1.4 编译 1.5 运行程序 1.6 测试和调试程序 1.7 维护和修改代码 ...
- android系统常见问题类型
android系统中常见的异常问题,包括上层应用.框架.内核.驱动等,一般来说有如下一些异常问题类型: ANR,Answer No Response,应用无响应. FC,Force Close,强制退 ...
- CentOS搭建BWAPP靶场并安装docker
为了不触碰国家安全网络红线作为技术人员我们尽可能的要在自己本机在上面创建自己的靶场: 在centos上面搭建靶场看似非常简单短短几行代码,需要注意以下几个点:(1.在docker上搭建 2.端口号 ...
- 在CabloyJS中将Webpack生成的文件自动上传到阿里云OSS
背景 阿里云OSS提供了一个Webpack插件,可在Webpack打包结束后将webpack生成的文件自动上传到阿里云OSS中 下面看看在CabloyJS中如何使用该插件 新建项目,并配置MySQL连 ...
- 使用 .NET MAUI 创建移动应用——Get Start
大家好,我是张飞洪,感谢您的阅读,我会不定期和你分享学习心得,希望我的文章能成为你成长路上的垫脚石,让我们一起精进. 1.IDE下载安装 如果你还没安装Visual Studio 2022 预览版 你 ...
- C++ 炼气期之数据是主角
1. 前言 数据在程序中的重要性,怎么强调都不为过,程序的本质就是通过提供数据处理逻辑,把数据从一种状态变成另一种状态的过程.处理逻辑一定是有针对性的,针对的是数据本身的特性. 只有了解了数据本身的内 ...
- .NET 6.0.6 和 .NET Core 3.1.26、Visual Studio 2022 17.2 和 17.3 Preview 2 和 .NET 7.0 Preview 5 同时发布
Microsoft 昨天发布了适用于 .NET 6.0.6 和 .NET Core 3.1.26.NuGet.Visual Studio 2019 和 Visual Studio 2022 17.2 ...
- 分享一个基于 netty 的 java 开源项目
1.简介 中微子代理(neutrino-proxy)是一个基于 netty 的.开源的 java 内网穿透项目.遵循 MIT 许可,因此您可以对它进行复制.修改.传播并用于任何个人或商业行为. 2.项 ...
- ACL权限控制
ALC讲述比较详细 https://zhuanlan.zhihu.com/p/360158311