Created by Dhivya Arasappan, last modified by Dennis C Wylie on Nov 08, 2015

This pipeline uses an annotated genome to identify differential expressed genes/transcripts. 10 hour minimum ($470 internal, $600 external) per project.

1. Quality Assessment

Quality of data assessed by FastQC; results of quality assessment will be evaluated prior to downstream analysis.

  • Deliverables:

    • reports generated by FastQC
  • Tools used:
    • FastQC: (Andrews 2010) used to generate quality summaries of data:

      • Per base sequence quality report: useful for deciding if trimming necessary.
      • Sequence duplication levels: evaluation of library complexity. Higher levels of sequence duplication may be expected for high coverage RNAseq data.
      • Overrepresented sequences: evaluation of adapter contamination.

2. Fastq Preprocessing

Quality assessment used to decide if any preprocessing of the raw data is required and if so, preprocessing is performed.

  • Deliverables:

    • Trimmed/filtered fastq files.
  • Tools Used:
    • Fastx-toolkit: Used to preprocess fastq files.

      • Fastq quality trimmer: Trimming reads based on quality.
      • Fastq quality filter: Filtering reads based on quality.
    • Cutadapt: Used to remove adaptor from reads.
 

3. Mapping

Mapping to genome reference performed using BWA-mem or Tophat.

  • Deliverables:

    • Mapping results, as bam files and mapping statistics.
  • Tools Used:
    • BWA-mem: (Li 2013) primary aligner used to generate read alignments.
    • Tophat: (Kim 2011) aligner used to generate read alignments in a splice-aware manner and identify novel junctions.
    • Samtools: (Li 2009) used to generate mapping statistics.

4. Gene/Transcript Counting

Counting the number of reads mapping to annotated intervals to obtain abundance of genes/transcripts.

  • Deliverables:

    • Raw gene/transcript counts
  • Tools Used:
    • HTSeq-count: (Anders 2014) used to count reads overlapping gene intervals.

5. DEG Identification

Normalization and statistical testing to identify differentially expressed genes.

  • Deliverables:

    • DEG Summary and master file containing fold changes and p values for every gene, MA Plots.
  • Tools Used:
    • DESeq2: (Love 2014) used to perform normalization and test for differential expression using the negative binomial distribution.

6、RNA-Seq Analysis Pipeline的更多相关文章

  1. RNA -seq

    RNA -seq RNA-seq目的.用处::可以帮助我们了解,各种比较条件下,所有基因的表达情况的差异. 比如:正常组织和肿瘤组织的之间的差异:检测药物治疗前后,基因表达的差异:检测发育过程中,不同 ...

  2. RNA seq 两种计算基因表达量方法

    两种RNA seq的基因表达量计算方法: 1. RPKM:http://www.plob.org/2011/10/24/294.html 2. RSEM:这个是TCGAdata中使用的.RSEM据说比 ...

  3. Power BI 与 Azure Analysis Services 的数据关联:1、建立 Azure Analysis Services服务

    Power BI 与 Azure  Analysis Services 的数据关联:1.建立  Azure  Analysis Services服务

  4. xgene:之ROC曲线、ctDNA、small-RNA seq、甲基化seq、单细胞DNA, mRNA

    灵敏度高 == 假阴性率低,即漏检率低,即有病人却没有发现出来的概率低. 用于判断:有一部分人患有一种疾病,某种检验方法可以在人群中检出多少个病人来. 特异性高 == 假阳性率低,即错把健康判定为病人 ...

  5. Scrapy框架——介绍、安装、命令行创建,启动、项目目录结构介绍、Spiders文件夹详解(包括去重规则)、Selectors解析页面、Items、pipelines(自定义pipeline)、下载中间件(Downloader Middleware)、爬虫中间件、信号

    一 介绍 Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速.简单.可扩展的方式从网站中提取所需的数据.但目前Scrapy的用途十分广泛,可 ...

  6. 7、RNAseq Downstream Analysis

    Created by Dennis C Wylie, last modified on Jun 29, 2015 Machine learning methods (including cluster ...

  7. 五、Scrapy中Item Pipeline的用法

    本文转载自以下链接: https://scrapy-chs.readthedocs.io/zh_CN/latest/topics/item-pipeline.html https://doc.scra ...

  8. 09、RNA降解图的计算过程

    RNA降解是影响芯片质量的一个很重要的因素,因为RNA是从5’开始降解的,所以理论5’的荧光强度要低于3’.RNA降解曲线可以表现这种趋势. 以样品GSM286756.CEL和GSM286757.CE ...

  9. RNA测序相对基因表达芯片有什么优势?

    RNA测序相对基因表达芯片有什么优势? RNA-Seq和基因表达芯片相比,哪种方法更有优势?关键看适用不适用.那么RNA-Seq适用哪些研究方向?是否您的研究?来跟随本文了解一下RNA测序相对基因表达 ...

随机推荐

  1. mysql 历史数据表迁移方案

    当业务运行一段时间后,会出现有些表数据量很大,可能对系统性能产生不良的影响,常见的如订单表.登录log表等,这些数据很有时效性,比如我们一般很少去查上个月的订单,最多也就是报表统计会涉及到. 在我们的 ...

  2. python3 mysql 多表查询

    python3 mysql 多表查询 一.准备表 创建二张表: company.employee company.department #建表 create table department( id ...

  3. 浅谈Android系统开发中LOG的使用【转】

    本文转载自:http://blog.csdn.net/luoshengyang/article/details/6581828 在程序开发过程中,LOG是广泛使用的用来记录程序执行过程的机制,它既可以 ...

  4. JavaScript的undefined与null、NaN的区别

    Javascript的数据类型 在JavaScript中,有三种住数据类型.两种复合数据类型和两种特殊数据类型. 1.主数据类型(基元数据类型) 字符串 String数据类型: 字符串值是一个由零个或 ...

  5. Hibernate和Struts分页查询

    分页查询数据库方法 /** * 分页查询方法 * @param sql,pageNO,maxResult * @return List */ public List<Object> que ...

  6. Javascript函数的参数arguments

    arguments Description 在所有的函数中有一个arguments对象,arguments对象指向函数的参数,arguments object is an Array-like obj ...

  7. CV2图像操作

    一.读入图像使用函数cv2.imread(filepath,flags)读入一副图片filepath:要读入图片的完整路径flags:读入图片的标志 cv2.IMREAD_COLOR:默认参数,读入一 ...

  8. css sprite技巧详解

    1. [代码][CSS]代码 CSSSprites在国内很多人叫css精灵,是一种网页图片应用处理方式.它允许你将一个页面涉及到的所有零星图片都包含到一张大图中去,这样一来,当访问该页面时,载入的图片 ...

  9. mvc购物车项目(2)

    为了避免数据冗余,我们可以把共同的信息,抽出建立一个单独的表,把不是共有的信息,建立一张单独表. 订单表分为两个表 create table orders( id number primary key ...

  10. 分享知识-快乐自己:Mybatis 基础动态语句

    目录: User: package mlq.bean; /** * 用户实体类 */ public class User { private Integer uId; private String u ...