polynomial time
https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time
An algorithm is said to be of polynomial time if its running time is upper bounded by a polynomial expression in the size of the input for the algorithm, i.e., T(n) = O(nk) for some constant k.[1][8] Problems for which a deterministic polynomial time algorithm exists belong to the complexity class P, which is central in the field of computational complexity theory. Cobham's thesis states that polynomial time is a synonym for "tractable", "feasible", "efficient", or "fast".[9]
Some examples of polynomial time algorithms:
- The selection sort sorting algorithm on n integers performs {\displaystyle An^{2}}
operations for some constant A. Thus it runs in time {\displaystyle O(n^{2})}
and is a polynomial time algorithm.
- All the basic arithmetic operations (addition, subtraction, multiplication, division, and comparison) can be done in polynomial time.
- Maximum matchings in graphs can be found in polynomial time.
Complexity classes[edit]
The concept of polynomial time leads to several complexity classes in computational complexity theory. Some important classes defined using polynomial time are the following.
- P: The complexity class of decision problems that can be solved on a deterministic Turing machine in polynomial time.
- NP: The complexity class of decision problems that can be solved on a non-deterministic Turing machine in polynomial time.
- ZPP: The complexity class of decision problems that can be solved with zero error on a probabilistic Turing machine in polynomial time.
- RP: The complexity class of decision problems that can be solved with 1-sided error on a probabilistic Turing machine in polynomial time.
- BPP: The complexity class of decision problems that can be solved with 2-sided error on a probabilistic Turing machine in polynomial time.
- BQP: The complexity class of decision problems that can be solved with 2-sided error on a quantum Turing machine in polynomial time.
P is the smallest time-complexity class on a deterministic machine which is robust in terms of machine model changes. (For example, a change from a single-tape Turing machine to a multi-tape machine can lead to a quadratic speedup, but any algorithm that runs in polynomial time under one model also does so on the other.) Any given abstract machinewill have a complexity class corresponding to the problems which can be solved in polynomial time on that machine.
复杂度类[编辑]
从多项式时间的概念出发,在计算复杂度理论中可以得到一些复杂度类。以下是一些重要的例子。
- P:包含可以使用确定型图灵机在多项式时间内解决的决定性问题。
- NP:包含可以使用非确定型图灵机在多项式时间内解决的决定性问题。
- ZPP:包含可以使用概率图灵机在多项式时间内零错误解决的决定性问题。
- RP:包含可以使用概率图灵机在多项式时间内解决的决定性问题,但它给出的两种答案中(是或否)只有一种答案是一定正确的,另一种则有几率不正确。
- BPP:包含可以使用概率图灵机在多项式时间内解决的决定性问题,它给出的答案有错误的概率在某个小于0.5的常数之内。
- BQP:包含可以使用量子图灵机在多项式时间内解决的决定性问题,它给出的答案有错误的概率在某个小于0.5的常数之内。
在机器模型可变的情况下,P在确定性机器上是最小的时间复杂度类。例如,将单带图灵机换成多带图灵机可以使算法运行速度以二次阶提升,但所有具有多项式时间的算法依然会以多项式时间运行。一种特定的抽象机器会有自己特定的复杂度类分类。
图灵机(英语:Turing machine),又称确定型图灵机,是英国数学家艾伦·图灵于1936年提出的一种抽象计算模型,其更抽象的意义为一种数学逻辑机,可以看作等价于任何有限逻辑数学过程的终极强大逻辑机器。
非确定型图灵机和确定型图灵机的不同之处在于,在计算的每一时刻,根据当前状态和读写头所读的符号,机器存在多种状态转移方案,机器将任意地选择其中一种方案继续运作,直到最后停机为止。具体而言,其状态转移函数为
在计算复杂性理论内,概率图灵机是一个非决定型图灵机,在每个转折点根据某种概率分布随机选择某种可行的转变(transition)。
要理解这几个概念,首先要明白几件事:
- 对于NP问题是否存在确定的多项式时间的解,目前还不清楚(即有可能有一天可以证明NP问题=P问题,但目前还证明不出来、也不能证明NP问题≠P问题,目前的结论只是NP问题集⊇P问题集
- 问题之间可以规约,即如果某个NP问题存在确定的多项式时间解,那么另一个NP问题也存在确定的多项式时间解。这个过程是可以证明的、并且已经被证明。
- NP困难问题(NP-hard problems)
- 是指这样的一类问题,它们本身的复杂度是多少无所谓(但由后面的论述可知至少是NP),但是只要这个问题找到确定的多项式时间的解,那么我们可以证明出所有的NP问题都一定存在确定的多项式时间的解。(简单叙述一下就是,只要有一个NP困难问题找到P解,那么所有NP问题都是P问题)
- NP完全问题(NP-complete problems)
- 如果一个问题既是NP困难问题又是NP问题,我们称之为NP完全问题。
polynomial time的更多相关文章
- Polynomial Library in OpenCascade
Polynomial Library in OpenCascade eryar@163.com 摘要Abstract:分析幂基曲线即多项式曲线在OpenCascade中的计算方法,以及利用OpenSc ...
- 周赛-Integration of Polynomial 分类: 比赛 2015-08-02 08:40 10人阅读 评论(0) 收藏
Integration of Polynomial Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/O ...
- FZU 2215 Simple Polynomial Problem(简单多项式问题)
Description 题目描述 You are given an polynomial of x consisting of only addition marks, multiplication ...
- Project Euler 101 :Optimum polynomial 最优多项式
Optimum polynomial If we are presented with the first k terms of a sequence it is impossible to say ...
- 【数论】UVa 10586 - Polynomial Remains
Problem F: Polynomial Remains Given the polynomial a(x) = an xn + ... + a1 x + a0, compute the remai ...
- 【CF493E】【数学】Vasya and Polynomial
Vasya is studying in the last class of school and soon he will take exams. He decided to study polyn ...
- 一起啃PRML - 1.1 Example: Polynomial Curve Fitting 多项式曲线拟合
一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言: ...
- 一元多项式Polynomial的C语言实现
/* 编译器:Dev-c++ 5.4.0 文件名:Polynomial.cpp 代码版本号:1.0 时间:2015年10月9日21:53:26 */ /* 总结: 1.结构体指针指向的区域要手动分配内 ...
- uva 498 - Polly the Polynomial
UVa 498: Polly the Polynomial | MathBlog #include <cstdio> #include <cstdlib> using name ...
- uva 10951 - Polynomial GCD(欧几里得)
题目链接:uva 10951 - Polynomial GCD 题目大意:给出n和两个多项式,求两个多项式在全部操作均模n的情况下最大公约数是多少. 解题思路:欧几里得算法,就是为多项式这个数据类型重 ...
随机推荐
- 前端存储之Web Sql Database
前言 在上一篇前端存储之indexedDB中说到,我们项目组要搞一个前后端分离的项目,要求在前端实现存储,我们首先找到了indexedDB,而我们研究了一段时间的indexedDB后,发现它并不是很适 ...
- Intellij idea远程debug连接tomcat,实现单步调试
转载:http://blog.csdn.net/boling_cavalry/article/details/73384036 web项目部署到tomcat上之后,有时需要打断点单步调试,如果用的是I ...
- 使用SQLite存储数据
一.SQLiteAndroid 为了让我们能够更加方便地管理数据库, 专门提供了一个SQLiteOpenHelper 帮助类,借助这个类就可以非常简单地对数据库进行创建和升级. 1.SQLiteOpe ...
- Python3链接MySQL数据库
Python 2.x 上连接MySQL的库倒是不少的,其中比较著名就是MySQLdb(Django项目都使用它:我也在开发测试系统时也使用过),见:http://sourceforge.net/pro ...
- XML的基本用法(转)
一.概述 XML全称为可扩展的标记语言.主要用于描述数据和用作配置文件. XML文档在逻辑上主要由一下5个部分组成: XML声明:指明所用XML的版本.文档的编码.文档的独立性信息 文档类型声明:指出 ...
- 命令行添加pod示例
1.创建AlamFireDemo 工程,关闭工程 2.进入到工程目录 执行 pod init 命令 生成 PodFile文件 3.vi PodFile编辑该文件 启用:platform :ios, ' ...
- R 介绍
R定义:一个能够自由有效地用于统计计算和绘图的语言和环境,它提供了广泛的统计分析和绘图技术. R语言的使用很大程度上可以说是借助各种各种各样R包的辅助,从某种程度上说,运用R的插件来满足不同的需求. ...
- Android开发之Serializable 和 Parcelable的差别(源码分享)
android 中自己定义的对象序列化的问题有两个选择一个是Parcelable,另外一个是Serializable. 一 序列化原因: 1.永久性保存对象.保存对象的字节序列到本地文件里. 2.通过 ...
- shell脚本通过ping命令来获取平均延时
#!/bin/bash #设置环境变量 PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin" exp ...
- mongoDB 特别指令用法
http://apluck.iteye.com/blog/1176160 a. 修改collection集合字段名 参见:http://www.mongodb.org/display/DOCS/U ...