Problem Description

Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

 

Input

The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

 

Output

You should output the answer modulo p.
 

Sample Input

2
1 2 5
2 1 5
 

Sample Output

3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

题意:

在n棵树上摘不超过m个果子,果子是一样的,问取法,结果膜p。

思路:

由隔板法或者母函数都可以得到结果是Σ(i=1˜m)   Cn+i-1(i) % p=Cn+m (m) %p。然后套Lucas的模板即可。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define LL long long
const int maxn=;
LL fac[maxn],Mod;
void factorial()
{
fac[]=; for(int i=;i<=Mod;i++) fac[i]=fac[i-]*i%Mod;
}
LL f_pow(LL a,LL x)
{
LL res=; a%=Mod;
while(x){ if(x&) res=res*a%Mod;a=a*a%Mod; x>>=; }return res;
}
LL Cm(LL n,LL m)
{
if(m>n) return ; return fac[n]*f_pow(fac[m]*fac[n-m]%Mod,Mod-)%Mod;
}
LL Lucas(LL n,LL m)
{
if(m==) return ; return Cm(n%Mod,m%Mod)*Lucas(n/Mod,m/Mod)%Mod;
}
int main()
{
LL n,m,T;scanf("%lld",&T);
while(T--){
scanf("%lld%lld%lld",&n,&m,&Mod);
factorial();
printf("%lld\n",Lucas(n+m,m));
} return ;
}

HDU3037Saving Beans(组合数+lucas定理)的更多相关文章

  1. uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)

    uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...

  2. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  3. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

  4. [Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)

    题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Descriptio ...

  5. luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)

    link 输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18 注意到一个2333这个数字很小并且还是质数这一良好性质, ...

  6. 【(好题)组合数+Lucas定理+公式递推(lowbit+滚动数组)+打表找规律】2017多校训练七 HDU 6129 Just do it

    http://acm.hdu.edu.cn/showproblem.php?pid=6129 [题意] 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b ...

  7. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  8. 【组合数+Lucas定理模板】HDU 3037 Saving

    acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, ...

  9. hdu3037 Saving Beans(Lucas定理)

    hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...

随机推荐

  1. JavaEE应用基础平台 AOS-V0.1 RELEASED

    写在最前面 AOS是一个有着悠久历史传承和发扬的平台.她的前世G4Studio自2010年公布V1.0版本号以来,先后经过多次版本号更新.并得到了一些小伙伴的认可和使用.但我们希望做得更好,走得更远. ...

  2. centos7.0 activemq的安装

    1:下载地址http://activemq.apache.org/activemq-590-release.html 2:wget http://archive.apache.org/dist/act ...

  3. c/c++一些小知识点(特此总结)

    ---恢复内容开始--- ---恢复内容结束---

  4. cocoapods最新使用

    1.首先用淘宝的Ruby镜像来访问CocoaPods,打开终端输入以下命令: (1)gem sources --remove http://ruby.gems.org/   (移除现有Ruby默认源) ...

  5. 【python】-- 面向对象引子、概念

    面向过程编程 1.编程范式 编程是 程序 员 用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程 , 一个程序是程序员为了得到一个任务结果而编写的一组指令的集合,正所谓条条大路通罗马 ...

  6. MAC 脚本批量启动应用

    1.touch batchStart.sh 2. #!/bin/bash cd /xxx open 1.app open 2.app 3.chmod +x batchStart.sh 4.ok

  7. Module 'curl' already loaded in Unknown on line 0

    Module 'curl' already loaded in Unknown on line 0 应该是php binary已经包含curl,你又动态加载了一遍.屏蔽掉你的extension 引用, ...

  8. hdu 3718 Different Division

    Different Division Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  9. Adam 算法

    简介 Adam 是一种可以替代传统随机梯度下降(SGD)过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学 ...

  10. Redis QPS测试

    1.计算qps: 1)redis发布版本中自带了redis-benchmark性能测试工具,可以使用它计算qps.示例:使用50个并发连接,发出100000个请求,每个请求的数据为2kb,测试host ...