Problem Description

Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

 

Input

The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

 

Output

You should output the answer modulo p.
 

Sample Input

2
1 2 5
2 1 5
 

Sample Output

3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

题意:

在n棵树上摘不超过m个果子,果子是一样的,问取法,结果膜p。

思路:

由隔板法或者母函数都可以得到结果是Σ(i=1˜m)   Cn+i-1(i) % p=Cn+m (m) %p。然后套Lucas的模板即可。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define LL long long
const int maxn=;
LL fac[maxn],Mod;
void factorial()
{
fac[]=; for(int i=;i<=Mod;i++) fac[i]=fac[i-]*i%Mod;
}
LL f_pow(LL a,LL x)
{
LL res=; a%=Mod;
while(x){ if(x&) res=res*a%Mod;a=a*a%Mod; x>>=; }return res;
}
LL Cm(LL n,LL m)
{
if(m>n) return ; return fac[n]*f_pow(fac[m]*fac[n-m]%Mod,Mod-)%Mod;
}
LL Lucas(LL n,LL m)
{
if(m==) return ; return Cm(n%Mod,m%Mod)*Lucas(n/Mod,m/Mod)%Mod;
}
int main()
{
LL n,m,T;scanf("%lld",&T);
while(T--){
scanf("%lld%lld%lld",&n,&m,&Mod);
factorial();
printf("%lld\n",Lucas(n+m,m));
} return ;
}

HDU3037Saving Beans(组合数+lucas定理)的更多相关文章

  1. uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)

    uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...

  2. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  3. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

  4. [Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)

    题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Descriptio ...

  5. luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)

    link 输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18 注意到一个2333这个数字很小并且还是质数这一良好性质, ...

  6. 【(好题)组合数+Lucas定理+公式递推(lowbit+滚动数组)+打表找规律】2017多校训练七 HDU 6129 Just do it

    http://acm.hdu.edu.cn/showproblem.php?pid=6129 [题意] 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b ...

  7. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  8. 【组合数+Lucas定理模板】HDU 3037 Saving

    acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, ...

  9. hdu3037 Saving Beans(Lucas定理)

    hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...

随机推荐

  1. RGBA与半透明背景

    概念 所谓RGBA颜色,就是RGB三原色加ALPHA.在给背景加入颜色的同一时候.提供透明度特性. 用法 background:rgba(90,90, 54, 0.5); 支持情况 Firefox 3 ...

  2. 【BZOJ3563/3569】DZY Loves Chinese II 线性基神题

    [BZOJ3563/3569]DZY Loves Chinese II Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以 ...

  3. 4 Values whose Sum is 0(二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 21370   Accep ...

  4. api 爬虫 避免相同 input 在信息未更新 情况下 重复请求重复

  5. IO密集型操作时,为什么线程比进程更好?

    在IO密集型的操作时,进程线程都不会太占用CPU,但是进程消耗的资源比较多.

  6. 类加载(一):static块 和 Class.forName

    1. class Some { static{ System.out.println("1"); } public Some(){ System.out.println(" ...

  7. Python读属性文件

    # coding:utf-8 class Properties: def __init__(self, file_name): self.file_name = file_name self.prop ...

  8. NeurIPS2018: DropBlock: A regularization method for convolutional networks

    NIPS 改名了!改成了neurips了... 深度神经网络在过参数化和使用大量噪声和正则化(如权重衰减和 dropout)进行训练时往往性能很好.dropout 广泛用于全连接层的正则化,但它对卷积 ...

  9. static_func

    <?php function testing() { static $a = 1; $a *= 2; echo $a."\n"; } testing(); testing() ...

  10. Elasticsearch的几种架构(ELK,EL,EF)性能对比测试报告

    Elasticsearch的几种架构性能对比测试报告 1.前言 选定了Elasticsearch作为存储的数据库,但是还需要对Elasticsearch的基础架构做一定测试,所以,将研究测试报告输出如 ...