Problem Description

Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

 

Input

The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

 

Output

You should output the answer modulo p.
 

Sample Input

2
1 2 5
2 1 5
 

Sample Output

3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

题意:

在n棵树上摘不超过m个果子,果子是一样的,问取法,结果膜p。

思路:

由隔板法或者母函数都可以得到结果是Σ(i=1˜m)   Cn+i-1(i) % p=Cn+m (m) %p。然后套Lucas的模板即可。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define LL long long
const int maxn=;
LL fac[maxn],Mod;
void factorial()
{
fac[]=; for(int i=;i<=Mod;i++) fac[i]=fac[i-]*i%Mod;
}
LL f_pow(LL a,LL x)
{
LL res=; a%=Mod;
while(x){ if(x&) res=res*a%Mod;a=a*a%Mod; x>>=; }return res;
}
LL Cm(LL n,LL m)
{
if(m>n) return ; return fac[n]*f_pow(fac[m]*fac[n-m]%Mod,Mod-)%Mod;
}
LL Lucas(LL n,LL m)
{
if(m==) return ; return Cm(n%Mod,m%Mod)*Lucas(n/Mod,m/Mod)%Mod;
}
int main()
{
LL n,m,T;scanf("%lld",&T);
while(T--){
scanf("%lld%lld%lld",&n,&m,&Mod);
factorial();
printf("%lld\n",Lucas(n+m,m));
} return ;
}

HDU3037Saving Beans(组合数+lucas定理)的更多相关文章

  1. uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)

    uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...

  2. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  3. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

  4. [Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)

    题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Descriptio ...

  5. luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)

    link 输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18 注意到一个2333这个数字很小并且还是质数这一良好性质, ...

  6. 【(好题)组合数+Lucas定理+公式递推(lowbit+滚动数组)+打表找规律】2017多校训练七 HDU 6129 Just do it

    http://acm.hdu.edu.cn/showproblem.php?pid=6129 [题意] 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b ...

  7. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  8. 【组合数+Lucas定理模板】HDU 3037 Saving

    acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, ...

  9. hdu3037 Saving Beans(Lucas定理)

    hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...

随机推荐

  1. PHP如何进阶,提升自己

    2017年6月15日14:32:51 今天看今日头条,刷到了一个话题?是:整天增删改查调接口,PHP程序员,如何突破职业瓶颈晋级? 晋级包括:职位晋级:技术能力晋级.当你的技术能力晋级了,职位晋级也就 ...

  2. python高级-------python2.7教程学习【廖雪峰版】(四)

    2017年6月9日17:57:55 任务: 看完高级部分 笔记:1.掌握了Python的数据类型.语句和函数,基本上就可以编写出很多有用的程序了.2.在Python中,代码不是越多越好,而是越少越好. ...

  3. 关于function的一种常用用法

    关于function的一种常用用法 void Share::InitAcrossManager() { GsMgrEvent gsMgrEvents;//保存function的结构体 gsMgrEve ...

  4. poj2349

    Arctic Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 0   Accepted: 0 Descript ...

  5. java jdk和android sdk的安装以及环境变量的配置

    安卓环境变量设置 (烦)http://wenku.baidu.com/link?url=QRwpFhP8d0yJorhcvuZPrz3lNFQW-uwYg6TlZtv6uen6_SVsvRrzf0UJ ...

  6. Problem_A

    Problem_A Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Descripti ...

  7. iostat命令简单使用

    1.iostat使用范围 iostat命令可以生成3种类型的报告: (1)CPU使用情况的报告 (2)设备使用情况的报告 (3)网络文件系统(NFS)使用情况的报告 2.每种报告的格式说明 关于CPU ...

  8. Python 中奇妙的下划线

    单个下划线(_) 通常有三种用法: 在python解释器: 单个下划线代表上次在交互解释期对话中(控制台)执行的结果.这种情况在标准的CPython解释器中首次被实现,接下来这种习惯也被保持下来: & ...

  9. MYSQL:基础——3N范式的表结构设计

    基于3N范式的数据表设计 范式 设计关系数据库时,遵从不同的规范要求,设计出合理的关系型数据库,这些不同的规范要求被称为不同的范式,各种范式呈递次规范,越高的范式数据库冗余越小. 关系数据库现有六种范 ...

  10. Python OOP(2)-static method,class method and instance method

    静态方法(Static Method): 一种简单函数,符合以下要求: 1.嵌套在类中. 2.没有self参数. 特点: 1.类调用.实例调用,静态方法都不会接受自动的self参数. 2.会记录所有实 ...