定位:

HIVE:长时间的批处理查询分析

impala:实时交互式SQL查询

impala优缺点
优点:
1. 生成执行计划树,不用多次启动job造成多余开销,并且减少中间结果数据写入磁盘,执行速度快
2. 不占用yarn的资源
3.
缺点:
1. 不支持Date类型
2. 与HIVE数据不同步,需要手工刷新
3. 排序异常
4. 不支持多个count(distinct)
5. 不支持用户定义函数UDF
6. 不支持查询期的容错
7. sum后精度只保留两位小数,需强转为double

Impala与Hive的异同
相同点:
数据存储:使用相同的存储数据池都支持把数据存储于HDFS, HBase。
元数据:两者使用HIVE的元数据。
SQL解释处理:比较相似都是通过词法分析生成执行计划。

不同点:
执行计划:
Hive: 依赖于MapReduce执行框架,执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。

数据流:
Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。

内存使用:
Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
Impala: 在遇到内存放不下数据时,当前版本0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一定的限制,最好还是与Hive配合使用。Impala在多个阶段之间利用网络传输数据,在执行过程不会有写磁盘的操作(insert除外)。

调度:
Hive: 任务调度依赖于Hadoop的调度策略。
Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。

容错:
Hive: 依赖于Hadoop的容错能力。
Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败,再查一次就好了,再查一次的成本很低)。但从整体来看,Impala是能很好的容错,所有的Impalad是对等的结构,用户可以向任何一个Impalad提交查询,如果一个Impalad失效,其上正在运行的所有Query都将失败,但用户可以重新提交查询由其它Impalad代替执行,不会影响服务。对于State Store目前只有一个,但当State Store失效,也不会影响服务,每个Impalad都缓存了State Store的信息,只是不能再更新集群状态,有可能会把执行任务分配给已经失效的Impalad执行,导致本次Query失败。

适用面:
Hive: 复杂的批处理查询任务,数据转换任务。
Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。

Impala与Hive的优缺点和异同的更多相关文章

  1. Impala与Hive的比較

    1. Impala架构        Impala是Cloudera在受到Google的Dremel启示下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批 ...

  2. impala与hive的比较以及impala的有缺点

    最近读的几篇关于impala的文章,这篇良心不错:https://www.biaodianfu.com/impala.html(本文截取部分内容) Impala是Cloudera公司主导开发的新型查询 ...

  3. Impala与Hive的比较

    1. Impala架构        Impala是Cloudera在受到Google的Dremel启发下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批 ...

  4. 【转载】Impala和Hive的区别

    Impala和Hive的关系  Impala是基于Hive的大数据实时分析查询引擎,直接使用Hive的元数据库Metadata,意味着impala元数据都存储在Hive的metastore中.并且im ...

  5. Impala和Hive的关系(详解)

    Impala和Hive的关系  Impala是基于Hive的大数据实时分析查询引擎,直接使用Hive的元数据库Metadata,意味着impala元数据都存储在Hive的metastore中.并且im ...

  6. [转]impala操作hive数据实例

    https://blog.csdn.net/wiborgite/article/details/78813342 背景说明: 基于CHD quick VM环境,在一个VM中同时包含了HDFS.YARN ...

  7. 求解:为什么impala实现hive查询 可以使用ifnull()函数,不可以使用length() 函数

    求大神解惑,找了很久都没有找到为什么??? hive支持length() 函数,不支持ifnull()函数??? impala实现hive查询 支持ifnull()函数,不支持length()  函数 ...

  8. Hive与数据库的异同

    一.Hive简介 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行.其优点是学习 ...

  9. 使用impala连接hive踩坑过程

    一.打包镜像出错 docker build总是出错,如果你用的是python3.7,可以考虑使用python3.6版本 并且注意:选择thrift-sasl==0.2.1,否则会出现: Attribu ...

随机推荐

  1. CodeForces 1109C. Sasha and a Patient Friend

    题目简述:维护以下三种操作 1. "1 t s":在时刻$t$插入命令$s$.保证任意操作后,任意时刻至多只有一个命令. 2. "2 t":删除时刻$t$的命令 ...

  2. vue插件开发与发布

    vue插件的规范 / plug.js Toast={}Toast.install=function(){ Vue.prototype.$toast=function(){ }} // 导出这个对象 e ...

  3. Linux cpulimit命令

    一.简介 http://www.3lian.com/edu/2015/06-12/221261.html 二.安装 http://toutiao.com/a6184908783490073090/ 三 ...

  4. spoj1716 Can you answer these queries III

    传送门 (分析见正睿2018.10.1笔记) 代码 #include<iostream> #include<cstdio> #include<cstring> #i ...

  5. noi.ac day1t1 candy

    传送门 分析 我们知道如果设A,B分别为将两家店从大到小排序之后各自的前缀和,则 Ans=Max{Min{A[i],B[j]}-W*(i+j)}. 为了得到这个Ans我们可以枚举两个数的Min,然后剩 ...

  6. 通过ADB命令行卸载或删除你的Android设备中的应用(转载)

    转自:http://mytiankong.com/?p=11755 如果你对你的Android设备在与命令行的交互间有一定的兴趣,那你可能想学习一些使用ADB卸载设备中已安装应用的技巧.为了使这种方法 ...

  7. Json数据导出生成Excel

    最近在做一个导入导出Excel的功能,导出其他类型的文件都比较熟悉,但是导入跟导出一个Excel还是稍微特殊点.根据这次的经验,写了个导出的小样例. 总体思路就是json数据的key,value跟Ex ...

  8. 比较get 和post

  9. 对XML文档进行修改

    怎样对XML文档时行修改.Insus.NET在此举个简单的例子.XML文档,就以这篇博文:http://www.cnblogs.com/insus/p/3274220.html 如果我们想对其中一个节 ...

  10. linux配置环境变量 - 认识

    环境 ubuntu17.04 终端(就是黑框) 认识  环境变量:$PATH 在 ×××/bin 下的命令,可以不用到指定目录下, 比如:安装hbase后,hbase提供一些shell命令在habse ...