「BZOJ 1297」「SCOI 2009」迷路「矩阵乘法」
题意
边权\(w \in [1, 9]\)的\(n\)个结点的有向图,图上从\(1\)到\(n\)长度为\(d\)的路径计数,\(n \leq 10\).
题解
如果边权为\(1\)很经典,设\(f[k][i]\)表示从\(1\)到\(i\),长度为\(k\)的路径条数,则\(f[k][i] = \sum_{j=1}^n f[k - 1][j] a[j][i]\)。于是可以构造初始矩阵,再乘以\(a^k\)(\(a\)为图的邻接矩阵)。
现在边权不唯一,但是边权很小,可以拆点,一个点拆成\(9\)个点,\(9\)点连成一条链,如果要连出边就从最后一个点连出去,如果连入边就连到相应到点就好。
注意模数比较小,取模可以少一些,会跑的比较快
#include <algorithm>
#include <cstdio>
using namespace std;
const int N = 12;
const int M = 92;
const int mo = 2009;
struct matrix {
int a[M][M], n, m;
matrix operator *(const matrix & b) {
matrix ans; ans.n = n; ans.m = b.m;
for(int i = 1; i <= ans.n; i ++) {
for(int j = 1; j <= ans.m; j ++) {
ans.a[i][j] = 0;
for(int k = 1; k <= m; k ++)
ans.a[i][j] += a[i][k] * b.a[k][j];
ans.a[i][j] %= mo;
}
}
return ans;
}
friend matrix mpow(matrix a, int b) {
matrix ans = a; b --;
for(; b >= 1; b >>= 1, a = a * a)
if(b & 1) ans = ans * a;
return ans;
}
} fir, tr;
int n, m, d;
char s[N];
int pos(int x, int y = 8) {
return x + y * n;
}
int main() {
scanf("%d%d", &n, &d);
tr.n = tr.m = m = n * 9;
for(int i = 1; i <= m; i ++)
for(int j = 1; j <= m; j ++)
tr.a[i][j] = 0;
for(int i = 1; i <= n; i ++) {
for(int j = 1; j <= 8; j ++)
tr.a[pos(i, j - 1)][pos(i, j)] = 1;
scanf("%s", s + 1);
for(int j = 1; j <= n; j ++) {
int w = s[j] ^ '0';
if(w) tr.a[pos(i)][pos(j, 9 - w)] = 1;
}
}
fir.n = 1; fir.m = m;
for(int i = 1; i <= fir.m; i ++)
fir.a[1][i] = i == pos(1) ? 1 : 0;
fir = fir * mpow(tr, d);
printf("%d\n", fir.a[1][pos(n)]);
return 0;
}
「BZOJ 1297」「SCOI 2009」迷路「矩阵乘法」的更多相关文章
- 1297. [SCOI2009]迷路【矩阵乘法】
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...
- BZOJ 2004: [Hnoi2010]Bus 公交线路 [DP 状压 矩阵乘法]
传送门 题意: $n$个公交站点,$k$辆车,$1...k$是起始站,$n-k+1..n$是终点站 每个站只能被一辆车停靠一次 每辆车相邻两个停靠位置不能超过$p$ 求方案数 $n \le 10^9, ...
- 【BZOJ 4180】 4180: 字符串计数 (SAM+二分+矩阵乘法)
4180: 字符串计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 164 Solved: 75 Description SD有一名神犇叫做Oxe ...
- bzoj 1706: [usaco2007 Nov]relays 奶牛接力跑【矩阵乘法+Floyd】
唔不知道怎么说--大概核心是把矩阵快速幂的乘法部分变成了Floyd一样的东西,非常之神 首先把点离散一下,最多有200个,然后建立邻接矩阵,a[u][v]为(u,v)之间的距离,没路就是inf 然后注 ...
- 「BZOJ 4228」Tibbar的后花园
「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...
- 「BZOJ 3645」小朋友与二叉树
「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...
- 「BZOJ 4502」串
「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...
- 「BZOJ 4289」 PA2012 Tax
「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...
随机推荐
- MyBatis的高级映射之多对一
使用传统方式的形式 使用MyBatis的方式 这样会产生两条语句 使用ResultMap的方式,对结果进行映射和转换,自己控制 两条语句变成一条语句,然后进行映射,这时Student类中包含一个 Cl ...
- Linux应用函数 -- 字符串
1.strchr 原型 char *strchr(const char* _Str,char _Val) 头文件 string.h 功能 查找字符串_Str中首次出现字符_Val的位置 返回值 成功 ...
- Spring Boot自定义配置与加载
Spring Boot自定义配置与加载 application.properties主要用来配置数据库连接.日志相关配置等.除了这些配置内容之外,还可以自定义一些配置项,如: my.config.ms ...
- OpenCV绘图函数
OpenCV几个绘图函数 矩形 rectangle(Mat& img,Point pt1, Point pt2, const Scalar&color, int thickness=1 ...
- mongo shell命令
https://docs.mongodb.com/manual/mongo/ 一.MongoDB客户端使用 1.mongo:启动mongo的客户端,和mongo客户端的登录 [root@cmos1 b ...
- Java-API:un-java.text.DecimalFormat
ylbtech-Java-API:java.text.DecimalFormat 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 0. https://docs. ...
- Python类(五)-反射
反射即通过字符串映射或修改程序运行时的状态.属性.方法 有4个方法: hasattr(): hasattr(object,string):object为实例化的对象,string为字符串 判断对象ob ...
- java反射专题三
一丶调用运行时类中指定的属性 Class clazz = Person.class; //1.获取指定的属性 Field name = clazz.getField("name") ...
- 【转载】C语言综合实验1—学生信息管理系统
http://www.cnblogs.com/Anker/archive/2013/05/06/3063436.html 实验题目:学生信息管理系统 实验要求:用户可以选择1-7可以分别进行学生信息的 ...
- C#封装CRUD到SqlHelper类解读
1.简单说明一下,一般情况下,数据库连接字符串是在App.config文件中进行配置,然后再在代码中进行引用.因此,我们在这里先看一下App.config文件. 首先看需要添加的内容: 参数说明: n ...