传送门

分析

考场上暴力水过好评...

然后我的st表查询似乎是log的,然后log三方跑的比log方快,qwq。

我们发现如果一个区间的最小值就是这个区间的gcd,则这个区间合法。所以我们二分区间长度然后枚举起点检验是否合法即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int LOG = ;
int n,a[],st1[][LOG+],st2[][LOG+],ans[],cnt;
inline int gcd(int x,int y){return y?gcd(y,x%y):x;}
inline bool ck(int sum){
int i,j,k;
if(sum==)return ;
for(i=;i+sum<=n;i++){
for(j=LOG;j>=;j--)
if((<<j)<=sum){
if(min(st1[i][j],st1[(i+sum)-(<<j)+][j])==gcd(st2[i][j],st2[(i+sum)-(<<j)+][j]))
return ;
break;
}
}
return ;
}
inline void go(int sum){
int i,j,k;
for(i=;i+sum<=n;i++){
for(j=LOG;j>=;j--)
if((<<j)<=sum){
if(min(st1[i][j],st1[(i+sum)-(<<j)+][j])==gcd(st2[i][j],st2[(i+sum)-(<<j)+][j]))
ans[++cnt]=i;
break;
}
}
if(sum==)
for(i=;i<=n;i++)ans[++cnt]=i;
cout<<cnt<<' '<<sum<<endl;
for(i=;i<=cnt;i++)printf("%d ",ans[i]);
puts("");
return;
}
int main(){
int i,j,k;
scanf("%d",&n);
for(i=;i<=n;i++)scanf("%d",&a[i]),st1[i][]=st2[i][]=a[i];
for(i=;i<=LOG;i++)
for(j=;j<=n;j++)if(j+(<<i)-<=n){
st1[j][i]=min(st1[j][i-],st1[j+(<<(i-))][i-]);
st2[j][i]=gcd(st2[j][i-],st2[j+(<<(i-))][i-]);
}
int le=,ri=n;
while(ri-le>){
int mid=(le+ri)>>;
if(ck(mid))le=mid;
else ri=mid;
}
go(le);
return ;
}

ZROI2018普转提day2t4的更多相关文章

  1. ZROI2018普转提day6t1

    传送门 分析 记录区间最大值,线段树上二分找比这个点大的最靠前位置即可 代码 #include<iostream> #include<cstdio> #include<c ...

  2. ZROI2018普转提day6t3

    传送门 分析 居然卡哈希数,万恶的出题人...... 感觉我这个方法似乎比较呆,我的代码成功成为了全网最慢的代码qwq 应该是可以直接哈希的 但由于我哈希学的不好又想练练线段树维护哈希,于是就写了个线 ...

  3. ZROI2018普转提day7t1

    传送门 分析 一道有意思的小题... 我们发现如果$(1,1)$为白色,则将其变为白色需要偶数次操作,而如果为黑色则需要奇数次操作 我们知道要让A赢需要奇数次操作,所以我们只需要判断$(1,1)$的颜 ...

  4. ZROI2018普转提day7t2

    传送门 分析 首先我们不难想到我们一定可以将每一个点分开算,然后看这个点被几个矩形包含 于是对于位置为$(i,j)$的点它被包含的次数为$i * (n-i+1) * j * (m-j+1)$ 这个式子 ...

  5. ZROI2018普转提day1t4

    传送门 分析 就是飞飞侠这道题...... 我们可以将这张图建成好几层,每一层可以向下一层的上下左右无代价移动,而对于每个点如果付b[i][j]的代价就可以走到比它高a[i][j]的层上.我们用这种方 ...

  6. ZROI2018普转提day1t1

    传送门 分析 我们先二分一下最终的平均值mid,然后让序列中的每一个数都减去这个mid,之后用新序列的前缀和建一棵线段树,枚举起点i,然后求出此时在i+L-1~i+R-1范围内的前缀和的最大值,用这个 ...

  7. ZROI2018普转提day2t2

    传送门 分析 我们发现2R+C实际就相当于R行C列的子集的个数.因此我们可以将所有集合的子集个数转换为每个集合属于的集合的个数.所以我们可以求出: 这个式子的意义为对于选i行j列的情况的所有方案乘上i ...

  8. ZROI2018普转提day2t1

    传送门 分析 我们通过仔细研究不难发现对于一次交换(i,i+1)的操作之后,在i之前的点就不可能跑到i之后,i+1之后的的点也不可能跑到i+1之前,所以这个序列在一次交换之后就相当于被分成了两个部分. ...

  9. ZROI2018普转提day2t3

    传送门 分析 考试的时候sb了......我们发现可以按照先序遍历将一棵树变成一个序列,而不需要删的数的数量便是最长上升子序列的长度,但是还有一个问题就是如果在5和7之间有3个空的位置就无法填入合法的 ...

随机推荐

  1. java学习笔记 --- 多线程(线程安全问题——同步代码块)

    1.导致出现安全问题的原因: A:是否是多线程环境 B:是否有共享数据 C:是否有多条语句操作共享数据 2.解决线程安全问题方法: 同步代码块: synchronized(对象){ 需要同步的代码; ...

  2. hdu-2609-How many(串的最小表示)

    题目链接 /* Name:hdu-2609-How many Copyright: Author: Date: 2018/4/24 15:47:49 Description: 串的最小表示 求出每个串 ...

  3. git教程4-创建分支与删除分支

    一.分支的理解 分支,即branch,用于从主分支(master)中新开辟出一个分支,用于对文件进行修改.这部分修改的内容在新的分支未融合到主分支的情况下,主分支是看不见的.新的分支相当于开辟了新的修 ...

  4. Magic Index 寻找数组中A[i]=i的位置(原题转自微信号待字闺中)

    有一个有意思的题目叫做Magic Index:给定一个数组A,其中有一个位置被称为Magic Index,含义是:如果i是Magic Index,则A[i] = i.假设A中的元素递增有序.且不重复, ...

  5. java 守护线程整理

    java中finally语句不走的可能存在system.exit(0)与守护线程 线程sleep采用TimeUnit类 设定线程的名字thread.getcurrentThread().setName ...

  6. DWZ富客户端HTML框架

    一.了解 概述:是中国人自己开发的基于jQuery实现的Ajax RIA开源框架. 目的:简单实用.扩展方便(在原有架构基础上扩展方便).快速开发.RIA思路.轻量级 使用:用html扩展的方式来代替 ...

  7. 自定义mysql函数时报错,[Err] 1418 - This function has none of DETERMINISTIC......

    今天在我执行自定义mysql函数的SQL时发生了错误,SQL如下: /** 自定义mysql函数 getChildList */delimiter //CREATE FUNCTION `pengwif ...

  8. rtsp/rtp over http

    转载:http://linux-expert.blog.163.com/blog/static/764585292008530912712/ rtsp/rtp over http C->S (g ...

  9. 关于web.xml不同版本之间的区别

    一.Servlet 2.3 <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3// ...

  10. 浅谈Java中的对象和对象引用

    浅谈Java中的对象和对象引用 在Java中,有一组名词经常一起出现,它们就是“对象和对象引用”,很多朋友在初学Java的时候可能经常会混淆这2个概念,觉得它们是一回事,事实上则不然.今天我们就来一起 ...