ZROI2018普转提day2t4
分析
考场上暴力水过好评...
然后我的st表查询似乎是log的,然后log三方跑的比log方快,qwq。
我们发现如果一个区间的最小值就是这个区间的gcd,则这个区间合法。所以我们二分区间长度然后枚举起点检验是否合法即可。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int LOG = ;
int n,a[],st1[][LOG+],st2[][LOG+],ans[],cnt;
inline int gcd(int x,int y){return y?gcd(y,x%y):x;}
inline bool ck(int sum){
int i,j,k;
if(sum==)return ;
for(i=;i+sum<=n;i++){
for(j=LOG;j>=;j--)
if((<<j)<=sum){
if(min(st1[i][j],st1[(i+sum)-(<<j)+][j])==gcd(st2[i][j],st2[(i+sum)-(<<j)+][j]))
return ;
break;
}
}
return ;
}
inline void go(int sum){
int i,j,k;
for(i=;i+sum<=n;i++){
for(j=LOG;j>=;j--)
if((<<j)<=sum){
if(min(st1[i][j],st1[(i+sum)-(<<j)+][j])==gcd(st2[i][j],st2[(i+sum)-(<<j)+][j]))
ans[++cnt]=i;
break;
}
}
if(sum==)
for(i=;i<=n;i++)ans[++cnt]=i;
cout<<cnt<<' '<<sum<<endl;
for(i=;i<=cnt;i++)printf("%d ",ans[i]);
puts("");
return;
}
int main(){
int i,j,k;
scanf("%d",&n);
for(i=;i<=n;i++)scanf("%d",&a[i]),st1[i][]=st2[i][]=a[i];
for(i=;i<=LOG;i++)
for(j=;j<=n;j++)if(j+(<<i)-<=n){
st1[j][i]=min(st1[j][i-],st1[j+(<<(i-))][i-]);
st2[j][i]=gcd(st2[j][i-],st2[j+(<<(i-))][i-]);
}
int le=,ri=n;
while(ri-le>){
int mid=(le+ri)>>;
if(ck(mid))le=mid;
else ri=mid;
}
go(le);
return ;
}
ZROI2018普转提day2t4的更多相关文章
- ZROI2018普转提day6t1
传送门 分析 记录区间最大值,线段树上二分找比这个点大的最靠前位置即可 代码 #include<iostream> #include<cstdio> #include<c ...
- ZROI2018普转提day6t3
传送门 分析 居然卡哈希数,万恶的出题人...... 感觉我这个方法似乎比较呆,我的代码成功成为了全网最慢的代码qwq 应该是可以直接哈希的 但由于我哈希学的不好又想练练线段树维护哈希,于是就写了个线 ...
- ZROI2018普转提day7t1
传送门 分析 一道有意思的小题... 我们发现如果$(1,1)$为白色,则将其变为白色需要偶数次操作,而如果为黑色则需要奇数次操作 我们知道要让A赢需要奇数次操作,所以我们只需要判断$(1,1)$的颜 ...
- ZROI2018普转提day7t2
传送门 分析 首先我们不难想到我们一定可以将每一个点分开算,然后看这个点被几个矩形包含 于是对于位置为$(i,j)$的点它被包含的次数为$i * (n-i+1) * j * (m-j+1)$ 这个式子 ...
- ZROI2018普转提day1t4
传送门 分析 就是飞飞侠这道题...... 我们可以将这张图建成好几层,每一层可以向下一层的上下左右无代价移动,而对于每个点如果付b[i][j]的代价就可以走到比它高a[i][j]的层上.我们用这种方 ...
- ZROI2018普转提day1t1
传送门 分析 我们先二分一下最终的平均值mid,然后让序列中的每一个数都减去这个mid,之后用新序列的前缀和建一棵线段树,枚举起点i,然后求出此时在i+L-1~i+R-1范围内的前缀和的最大值,用这个 ...
- ZROI2018普转提day2t2
传送门 分析 我们发现2R+C实际就相当于R行C列的子集的个数.因此我们可以将所有集合的子集个数转换为每个集合属于的集合的个数.所以我们可以求出: 这个式子的意义为对于选i行j列的情况的所有方案乘上i ...
- ZROI2018普转提day2t1
传送门 分析 我们通过仔细研究不难发现对于一次交换(i,i+1)的操作之后,在i之前的点就不可能跑到i之后,i+1之后的的点也不可能跑到i+1之前,所以这个序列在一次交换之后就相当于被分成了两个部分. ...
- ZROI2018普转提day2t3
传送门 分析 考试的时候sb了......我们发现可以按照先序遍历将一棵树变成一个序列,而不需要删的数的数量便是最长上升子序列的长度,但是还有一个问题就是如果在5和7之间有3个空的位置就无法填入合法的 ...
随机推荐
- GET请求与POST请求区别
GET请求与POST请求区别 a:语义: GET:客户端想获取服务器资源 POST:客户端想传递数据给服务器 b:安全级: GET:不安全 POST:不安全 c:数据长度 GET:客户端发送数据最长1 ...
- HihoCoder1449 重复旋律6(后缀自动机)
描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一个音乐旋律被表示为一段数构成的数列. 现在小Hi想知道一部作品中所有长度为K的旋律中出现次数最多的旋律的出现次数.但是K不是固定的,小Hi想知道对 ...
- scrapy入门实践1
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 这就是整个Scrapy的架构图了: 各部件职能: Scrapy ...
- Redis底层探秘(五):Redis对象
前面几篇文章,我们一起学习了redis用到的所有主要数据结构,比如简单动态字符串(sds).双端链表.字典.压缩列表.整数集合等等. redis并没有直接使用这些数据结构来实现键值对数据库,而是基于这 ...
- N!的阶乘附带简单大整数类的输入输出(暂时没有深入的了解)
Given an integer N(0 ≤ N ≤ 10000), your task is to calculate N! 我的思路:就想着大整数类去了,才发现自己还不能很好的掌握,其实这是一个大 ...
- [Luogu2371][国家集训队]墨墨的等式
luogu 题意 给出\(n,a_i,B_{min},B_{max}\),求使得\(a_1x_1+a_2x_2+...+a_nx_n=B\)存在一组非负整数解的\(B\in[B_{min},B_{ma ...
- hdu5542 The Battle of Chibi[DP+BIT]
求给定序列中长度为M的上升子序列个数.$N,M<=1000$. 很容易想到方法.$f[i,j]$表示以第$i$个数结尾,长度为$j$的满足要求子序列个数.于是转移也就写出来了$f[i][j]+= ...
- Operating System-进程间互斥的问题-生产者&&消费者引入
之前介绍的几种解决进程间互斥的方案,不管是Peterson方案还是TSL指令的方式,都有一个特点:当一个进程被Block到临界区外面时,被Block的进程会一直处于忙等待的状态,这个不但浪费了CPU资 ...
- CF 949C Data Center Maintenance——思路+SCC
题目:http://codeforces.com/contest/949/problem/C 可以想到可能是每组c有连边的可能. 但别直接给c1.c2连边,那样之后会变得很不好做. 可以把一些限制放在 ...
- Python collections系列之单向队列
单向队列(deque) 单项队列(先进先出 FIFO ) 1.创建单向队列 import queue q = queue.Queue() q.put(') q.put('evescn') 2.查看单向 ...