剑指Offer面试题:29.丑数
一、题目:丑数
题目:我们把只包含因子2、3和5的数称作丑数(Ugly Number)。求按从小到大的顺序的第1500个丑数。例如6、8都是丑数,但14不是,因为它包含因子7。习惯上我们把1当做第一个丑数。
二、两种解决方案
2.1 一一遍历法:时间效率低下
使用遍历法求第k个丑数,从1开始遍历,如果是丑数则count++,直到count=k为止。那么如何判断丑数呢?根据丑数的定义,丑数只有2,3,5这三个因子,那么我们就拿数字除以这三个因子。具体算法如下:
Step1.如果一个数能够被2整除,那么让他继续除以2;
Step2.如果一个数能够被3整除,那么让他继续除以3;
Step3.如果一个数能够被5整除,那么让他继续除以5;
Step4.如果最后这个数变为1,那么这个数就是丑数,否则不是。
根据以上算法实现代码如下:
public int GetUglyNumber(int index)
{
if (index <= )
{
return ;
} int number = ;
int uglyCount = ; while (uglyCount < index)
{
number++; if (IsUgly(number))
{
uglyCount++;
}
} return number;
} private bool IsUgly(int number)
{
while (number % == )
{
number /= ;
} while (number % == )
{
number /= ;
} while (number % == )
{
number /= ;
} return number == ? true : false;
}
该算法非常直观,代码也非常简洁,但最大的问题就在于每个整数都需要计算。即使一个数字不是丑数,我们还是需要对它做求余数和除法操作。因此该算法的时间效率不是很高,
2.2 空间换时间法:时间效率较高
根据丑数的定义,我们可以知道丑数可以由另外一个丑数乘以2,3或者5得到。因此我们可以创建一个数组,里面的数字是排好序的丑数,每一个丑数都是前面的丑数乘以2,3或者5得到的。
我们把得到的第一个丑数乘以2以后得到的大于M的结果记为M2。同样,我们把已有的每一个丑数乘以3和5,能得到第一个大于M的结果M3和M5。那么M后面的那一个丑数应该是M2,M3和M5当中的最小值:Min(M2,M3,M5)。比如将丑数数组中的数字按从小到大乘以2,直到得到第一个大于M的数为止,那么应该是2*2=4<M,3*2=6>M,所以M2=6。同理,M3=6,M5=10。所以下一个丑数应该是6。
根据以上思路实现代码如下:
public int GetUglyNumber(int index)
{
if (index <= )
{
return ;
} int[] uglyNumbers = new int[index];
uglyNumbers[] = ;
int nextUglyIndex = ; int multiply2 = ;
int multiply3 = ;
int multiply5 = ;
int min = ; while (nextUglyIndex < index)
{
min = Min(uglyNumbers[multiply2] * , uglyNumbers[multiply3] * , uglyNumbers[multiply5] * );
uglyNumbers[nextUglyIndex] = min; while (uglyNumbers[multiply2] * <= uglyNumbers[nextUglyIndex])
{
multiply2++;
} while (uglyNumbers[multiply3] * <= uglyNumbers[nextUglyIndex])
{
multiply3++;
} while (uglyNumbers[multiply5] * <= uglyNumbers[nextUglyIndex])
{
multiply5++;
} nextUglyIndex++;
} int result = uglyNumbers[index - ];
uglyNumbers = null; return result;
} private int Min(int num1, int num2, int num3)
{
int min = num1 < num2 ? num1 : num2;
min = min < num3 ? min : num3; return min;
}
和第一种方案相比,第二种方案不需要在非丑数的整数上做任何计算,因此时间效率有明显提升。但也需要指出,第二种算法由于需要保存已经生成的丑数,因此需要一个数组,从而增加了空间消耗。如果是求第1500个丑数,将创建一个能容纳1500个丑数的数组,这个数组占内存6KB。
三、单元测试与性能对比
3.1 单元测试
(1)测试用例
public static void Main(string[] args)
{
Program p = new Program();
p.Test();
p.Test();
p.Test();
p.Test();
p.Test();
p.Test();
p.Test();
p.Test();
p.Test();
p.Test();
p.Test();
p.Test();
p.Test();
p.Test(); Console.ReadKey();
} public void Test(int index)
{
int result = GetUglyNumberWithSpace(index);
Console.WriteLine("Test result is {0}", result);
Console.WriteLine("-------------End-------------");
}
(2)测试结果

3.2 性能对比
这里我们使用两种解决方案来求第1500个丑数,通过下面的图片可以清楚地看到两种方案的响应时间。(这里借助老赵的CodeTimer类来进行时间效率的监测)
(1)一一遍历法:65秒,我等得花儿都谢了

(2)空间换时间法:4毫秒,迅雷不及掩耳

由对比可以看出,一个简单的优化,再通过6KB的空间换取了巨大的时间效率,在实际开发中是一个值得实践的解决思路(当然,事先得权衡一下利弊)。
剑指Offer面试题:29.丑数的更多相关文章
- 剑指Offer:面试题34——丑数(java实现)
问题描述: 把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数. 思路1: ...
- Leetcode - 剑指offer 面试题29:数组中出现次数超过一半的数字及其变形(腾讯2015秋招 编程题4)
剑指offer 面试题29:数组中出现次数超过一半的数字 提交网址: http://www.nowcoder.com/practice/e8a1b01a2df14cb2b228b30ee6a92163 ...
- 剑指Offer - 九度1214 - 丑数
剑指Offer - 九度1214 - 丑数2013-11-21 21:06 题目描述: 把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. ...
- 剑指offer系列59---寻找丑数
[题目]把只包含因子2.3和5的数称作丑数(Ugly Number). * 例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数. 解法一 ...
- 【剑指Offer】33、丑数
题目描述: 把只包含质因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含质因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数 ...
- 【剑指offer】q34:丑数
题目要求第n个丑数.所以对于中间结果不须要保存. def Humble(index): curHum = 1 M2 = 2; M3 = 3; M5 = 5 while index > 1: cu ...
- 剑指offer(33)丑数
题目描述 把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数. 题目分析 ...
- 剑指offer三十三之丑数
一.题目 如果一个数的因子中,出去1和本身以外,质数因子只包含2.3和5,则把改数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含质数因子7. 习惯上我们把1当做是第一个 ...
- 剑指Offer:面试题29——数组中出现次数超过一半的数字(java实现)
PS:在前几天的面试中,被问到了这个题.然而当时只能用最低效的方法来解. 问题描述: 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2, ...
- 剑指offer——面试题29:顺时针打印矩阵
#include"iostream" #include"stdio.h" using namespace std; void PrintMatrixInCirc ...
随机推荐
- 【Java EE 学习 71 下】【数据采集系统第三天】【分析答案实体】【删除问题】【删除页面】【删除调查】【清除调查】【打开/关闭调查】
一.分析答案实体 分析答案实体主要涉及到的还是设计上的问题,技术点几乎是没有的.首先需要确定一下答案的格式才能最终确定答案实体中需要有哪些属性. 答案格式的设计是十分重要的,现设计格式如下: 在表单中 ...
- C#远程时间同步助手软件设计
C#远程时间同步助手软件设计 本程序才C#语言开发,实现远程时间同步功能,可以将本地时间每隔一段时间与时间服务器时间进行同步!不足之处还望见谅! 软件开发环境:Visual Studio 2010 软 ...
- Orchard教程索引页
Orchard官方教程(译)索引 链接标注 原文 则表示未译,其他带有中文标题的表示译文内容. 入门 安装Orchard--Installing Orchard 通过zip包手动安装Orchard-- ...
- echarts中显示效果option中必有的属性
写一个最简单的效果让option中不可缺少的属性. var option = { xAxis:[ //x轴,数组对象,其下至少有一个对象 {.....} ], yAxis:[//y轴,数组对象,其下可 ...
- http tcp udp ip 间的关系
首先,我自己梳理一下,其实除了应对以后的笔试,还有需要应对的是自己在编程中对于api的选择,我在满足需求时采取哪种方案更好. 首先,我需要了解的是tcp/ip是一个协议组,有三大层: ip 对应于网络 ...
- React生命周期
在react生命周期中,分2段执行,一个挂载的生命周期,一个是组件发生了数据变动,或者事件触发而引发的更新生命周期. 注:react生命周期很重要,对于很多组件场景的应用发挥重要作用,而且不熟悉生命周 ...
- [BZOJ4200][Noi2015]小园丁与老司机
4200: [Noi2015]小园丁与老司机 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 106 Solved ...
- Windows中断那些事儿
搞内核研究的经常对中断这个概念肯定不陌生,经常我们会接触很多与中断相关的术语,按照软件和硬件进行分类: 硬件CPU相关: IRQ.IDT.cli&sti 软件操作系统相关: APC.DPC.I ...
- db2 日期时间格式
db2日期和时间常用汇总 1.db2可以通过SYSIBM.SYSDUMMY1.SYSIBM.DUAL获取寄存器中的值,也可以通过VALUES关键字获取寄存器中的值. SELECT 'HELLO DB2 ...
- nginx android app 慢网络请求超时
最近遇到了android 在慢网络下面请求服务器报 java.net.SocketException: recvfrom failed: ECONNRESET (Connection reset by ...