题意:

思路:这是一道论文题 https://link.springer.com/content/pdf/10.1007/BFb0066192.pdf

From http://www.cnblogs.com/zhouzhendong/p/CF1019C.html

 #include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<bitset>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef vector<int> VI;
#define fi first
#define se second
#define MP make_pair
#define N 1100000
#define M 51
#define MOD 1000000007
#define eps 1e-8
#define pi acos(-1)
#define oo 3e14 vector<int> c[N];
int a[N],b[N],q[N]; int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) c[i].clear();
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
c[x].push_back(y);
}
for(int i=;i<=n;i++)
if(!a[i])
{
for(int j=;j<=(int)c[i].size()-;j++) a[c[i][j]]=;
a[i]=b[i]=;
}
for(int i=n;i>=;i--)
if(b[i])
{
for(int j=;j<=(int)c[i].size()-;j++) b[c[i][j]]=;
}
int ans=;
for(int i=;i<=n;i++)
if(b[i]) q[++ans]=i;
printf("%d\n",ans);
for(int i=;i<=ans-;i++) printf("%d ",q[i]);
printf("%d\n",q[ans]);
return ;
}

【CF1020E】Sergey's problem(构造)的更多相关文章

  1. Codeforces 1019C Sergey's problem 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1019C.html 题目传送门 - CF1019C 题意 给定一个有 $n$ 个节点 . $m$ 条边的有向 ...

  2. [CF1019C]Sergey's problem[构造]

    题意 找出一个集合 \(Q\),使得其中的点两两之间没有连边,且集合中的点可以走不超过两步到达其他所有不在集合中的点.输出任意一组解. \(n\leq 10^6\) 分析 考虑构造,先从 \(1\) ...

  3. Codeforces Round #503 (by SIS, Div. 2) E. Sergey's problem

    E. Sergey's problem [题目描述] 给出一个n个点m条边的有向图,需要找到一个集合使得1.集合中的各点之间无无边相连2.集合外的点到集合内的点的最小距离小于等于2. [算法] 官方题 ...

  4. 【Cf #503 C】Sergey's problem(有趣的构造)

    感觉这种构造题好妙啊,可我就是想不到诶. 给出一张无自环的有向图,回答一个独立集,使得图中任意一点都可以被独立集中的某一点两步之内走到. 具体构造方案如下: 下标从小到大枚举点,如果该点没有任何标记, ...

  5. Sergey's problem CodeForces - 1019C (图论,构造,神题)

    链接 大意: 给定有向图, 求选择一个点集$S$, 使得$S$任意两点不相连, 且对于不属于$S$的任意点$x$, 均存在$S$中的点$y$, 使得$d(x,y)<=2$, $d(x,y)$为从 ...

  6. CF1019C Sergey's problem (图上构造)

    题目大意:给你一个有向连通图,让你找出一个点集,保证点集内的点之间没有直接连边,且集合中存在一点,到一个 非点集中的点的距离小于等于2 思路很清奇 首先编号从小到大遍历每个点,如果这个点没有被访问过, ...

  7. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  8. 【CF1174D】 Ehab and the Expected XOR Problem - 构造

    题面 Given two integers \(n\) and \(x\), construct an array that satisfies the following conditions: · ...

  9. hdu 1757 A Simple Math Problem (构造矩阵解决递推式问题)

    题意:有一个递推式f(x) 当 x < 10    f(x) = x.当 x >= 10  f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + ...

随机推荐

  1. NPOI导出Excel,添加图片和设置格式,添加条形码

    先上代码 using grproLib; using System; using System.Collections.Generic; using System.Data; using System ...

  2. JsBridge "Uncaught TypeError: Cannot call method 'callHandler' of undefined", source

    h5和原生结合开发app越来越流行.其实就是webview 的js调用native的方法.也就是需要搭建一个桥.这样的桥早就有人搭建好了,那就是jsbridge. git地址: https://git ...

  3. border与background定位

    1.background定位的局限 只能相对于左上角数值定位,不能相对于右下 即background-position默认相对于左上方定位的 2.怎样让图片相对于右下角? background-pos ...

  4. Python基础——安装运行

    Python是如何运行的? 像绝大多数编程语言一样,要在计算机上能够运行python程序,至少需要安装一个最小的Python包:一个Python解释器和支持的库. 安装Python 安装包下载:htt ...

  5. quartz 动态更改执行时间

    说明:Quartz + Servlet, 参考国外著名站点的文章:http://stackoverflow.com/questions/12208309/need-to-set-the-quartz- ...

  6. 《Cracking the Coding Interview》——第12章:测试——题目5·

    2014-04-25 00:41 题目:怎么测试一支笔?(Pen?您老说的是钢笔?) 解法:这种简约而不简单的题目,实在是面试官最喜欢,面试者最头疼的类型了.面试官可以只花三秒,以一种灰常高贵冷艳的语 ...

  7. ffifdyop

    题目地址:http://www.shiyanbar.com/ctf/2036 后台登陆 上来看到这个界面,果断先看一波源代码. 看到是拼接字符串进行sql查询,就想到了注入了. 但是很不幸的是md5( ...

  8. Jmeter 参数化之 CSV Data Set Config 循环读取参数

    对于做接口和性能测试,个人感觉Jmeter是一个非常方便易学的工具,今天随笔记录Jmeter 参数化之 CSV Data Set Config. 首先在开始记录之前,先搞明白2个问题 1.什么是参数化 ...

  9. Oracle 监听/数据库 启动/关闭

    LSNRCTL命令启动.关闭和查看监听器的状态的方法 从lsnrctl status命令的输出中得到监听器状态,包括如下的信息: 监听器的启动时间 监听器的运行时间 监听器参数文件listener.o ...

  10. 推荐系统评测指标--准确率(Precision)和召回率(Recall)、F值(F-Measure)

    转自http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/ 1,准确率和召回率是广泛应用于信息检索和统计学分类领域的两个 ...