这个Tarjan算法是求LCA的算法,不是那个强连通图的

  它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数

  它的优点是比在线算法好写很多

  不过有些题目是强制在线的,此类离线算法就无法使用了

  另附上在线ST算法的链接:

    http://www.cnblogs.com/hadilo/p/5837517.html


  直接上伪代码:

  源代码中将询问用栈分节点一个个压入,而且克隆了单次询问,如询问 1 5 节点,则将 5 压入 1 的栈中,并且将 5 压入 1 的栈中

  因为当询问时会有一次另一个还未加入并查集的情况

 #include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<stack>
#define N 100001
using namespace std; int down[N],next[N],f[N],ans[N],n;
stack<int> s[N],num[N];
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
void dfs(int x)
{
f[x]=x;
int i;
for (i=down[x];i!=;i=next[i])
{
dfs(i);
f[find(f[i])]=find(f[x]);
}
while (!s[x].empty())
{
if (f[s[x].top()]!=s[x].top()) ans[num[x].top()]=find(f[s[x].top()]);
s[x].pop();
num[x].pop();
}
}
int main()
{
freopen("lca.in","r",stdin);
freopen("lca.out","w",stdout);
int i,x,y,t,root;
scanf("%d",&n);
for (i=;i<=n;i++)
{
scanf("%d",&x);
next[i]=down[x];
down[x]=i;
if (x==) root=i;
}
scanf("%d",&t);
for (i=;i<=t;i++)
{
scanf("%d%d",&x,&y);
if (x==y) ans[i]=x;
s[x].push(y);
s[y].push(x);
num[x].push(i);
num[y].push(i);
}
dfs(root);
for (i=;i<=t;i++) printf("%d\n",ans[i]);
return ;
}

版权所有,转载请联系作者,违者必究

QQ:740929894

求LCA最近公共祖先的离线Tarjan算法_C++的更多相关文章

  1. 求LCA最近公共祖先的在线ST算法_C++

    ST算法是求最近公共祖先的一种 在线 算法,基于RMQ算法,本代码用双链树存树 预处理的时间复杂度是 O(nlog2n)   查询时间是 O(1) 的 另附上离线算法 Tarjan 的链接: http ...

  2. LCA(最近公共祖先)——离线 Tarjan 算法

    tarjan算法的步骤是(当dfs到节点u时):1 在并查集中建立仅有u的集合,设置该集合的祖先为u1 对u的每个孩子v:   1.1 tarjan之   1.2 合并v到父节点u的集合,确保集合的祖 ...

  3. 求LCA最近公共祖先的在线倍增算法模板_C++

    倍增求 LCA 是在线的,而且比 ST 好写多了,理解起来比 ST 和 Tarjan 都容易,于是就自行脑补吧,代码写得容易看懂 关键理解 f[i][j] 表示 i 号节点的第 2j 个父亲,也就是往 ...

  4. cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!

    2450. 距离 ★★   输入文件:distance.in   输出文件:distance.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...

  5. LCA最近公共祖先 ST+RMQ在线算法

    对于一类题目,是一棵树或者森林,有多次查询,求2点间的距离,可以用LCA来解决.     这一类的问题有2中解决方法.第一种就是tarjan的离线算法,还有一中是基于ST算法的在线算法.复杂度都是O( ...

  6. LCA(最近公共祖先)之倍增算法

    概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介 ...

  7. HDU2586.How far away ?——近期公共祖先(离线Tarjan)

    http://acm.hdu.edu.cn/showproblem.php?pid=2586 给定一棵带权有根树,对于m个查询(u,v),求得u到v之间的最短距离 那么仅仅要求得LCA(u,v),di ...

  8. POJ - 1470 Closest Common Ancestors(离线Tarjan算法)

    1.输出测试用例中是最近公共祖先的节点,以及这个节点作为最近公共祖先的次数. 2.最近公共祖先,离线Tarjan算法 3. /* POJ 1470 给出一颗有向树,Q个查询 输出查询结果中每个点出现次 ...

  9. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

随机推荐

  1. pytorch中torch.nn构建神经网络的不同层的含义

    主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出 ...

  2. 12 new方法和单例、定制访问函数、装饰器

    new方法和单例.定制访问函数.装饰器 上节课作业解答 # 通过多重继承方法,分别定义出动物,人类,和和荷兰人三种类 class Animal(object): def __init__(self, ...

  3. Python学习之set集合

    set集合以{}保存一组可迭代对象,如列表,字符串,set集合本身.集合内的元素若有重复的,将自动去除重复元素 a=set([1,2,3]) print(a) b=set('hello python' ...

  4. 汉罗塔问题——Python

    汉罗塔问题就是一个循环的过程:* (有两种情况) 如果被移动盘只有一个盘子,可以直接移动到目的盘 但是被移动盘有多个盘子,就先需要将上面的n-1个盘子通过目的盘移动到辅助盘,然后将被移动盘最下面一个盘 ...

  5. Git Pro Book

    目录 2nd Edition (2014) Switch to 1st Edition Download Ebook The entire Pro Git book, written by Scott ...

  6. python使用网易邮箱发邮件

    # -*- coding: UTF-8 -*- import smtplib from email.mime.text import MIMEText import email.mime.multip ...

  7. MAC中mongodb的连接遇到的问题及调试

    今天在MAC环境下连接mongodb,遇到了一些报错,最终调试全部搞定.在此特做记录! 首先,mongod启动失败 上面有一句话是 exception in initAndListen: 20 Att ...

  8. linux中如何解决克隆后的电脑的问题

    1.如何解决克隆后的电脑的网络问题 克隆出来的电脑,IP地址,网卡都是重复的,不能直接使用,需要修改 1)vim  /etc/udev/rules.d/70-persistent-net.rules ...

  9. jquery跨域解决方案JSONP

    1.在互联网中我们的计算机是通过IP来定位的,但是IP比较难记忆,因此通过domain name(域名)来取代IP 2.什么是跨域? (1)默认浏览器为了安全问题,禁止了xmlhttprequest跨 ...

  10. 利用split方法计算字符串中出现字母最多的次数

    最近练习一些简单的算法题,知道自己很不聪明,但却没想到用了这么久,划算不划算是个需要考虑的问题, 其中有个算法是:统计一个字符串出现最多的字母,网上很多自己的见解,但是才疏学浅,有些地方看的有点困难, ...