这个Tarjan算法是求LCA的算法,不是那个强连通图的

  它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数

  它的优点是比在线算法好写很多

  不过有些题目是强制在线的,此类离线算法就无法使用了

  另附上在线ST算法的链接:

    http://www.cnblogs.com/hadilo/p/5837517.html


  直接上伪代码:

  源代码中将询问用栈分节点一个个压入,而且克隆了单次询问,如询问 1 5 节点,则将 5 压入 1 的栈中,并且将 5 压入 1 的栈中

  因为当询问时会有一次另一个还未加入并查集的情况

 #include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<stack>
#define N 100001
using namespace std; int down[N],next[N],f[N],ans[N],n;
stack<int> s[N],num[N];
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
void dfs(int x)
{
f[x]=x;
int i;
for (i=down[x];i!=;i=next[i])
{
dfs(i);
f[find(f[i])]=find(f[x]);
}
while (!s[x].empty())
{
if (f[s[x].top()]!=s[x].top()) ans[num[x].top()]=find(f[s[x].top()]);
s[x].pop();
num[x].pop();
}
}
int main()
{
freopen("lca.in","r",stdin);
freopen("lca.out","w",stdout);
int i,x,y,t,root;
scanf("%d",&n);
for (i=;i<=n;i++)
{
scanf("%d",&x);
next[i]=down[x];
down[x]=i;
if (x==) root=i;
}
scanf("%d",&t);
for (i=;i<=t;i++)
{
scanf("%d%d",&x,&y);
if (x==y) ans[i]=x;
s[x].push(y);
s[y].push(x);
num[x].push(i);
num[y].push(i);
}
dfs(root);
for (i=;i<=t;i++) printf("%d\n",ans[i]);
return ;
}

版权所有,转载请联系作者,违者必究

QQ:740929894

求LCA最近公共祖先的离线Tarjan算法_C++的更多相关文章

  1. 求LCA最近公共祖先的在线ST算法_C++

    ST算法是求最近公共祖先的一种 在线 算法,基于RMQ算法,本代码用双链树存树 预处理的时间复杂度是 O(nlog2n)   查询时间是 O(1) 的 另附上离线算法 Tarjan 的链接: http ...

  2. LCA(最近公共祖先)——离线 Tarjan 算法

    tarjan算法的步骤是(当dfs到节点u时):1 在并查集中建立仅有u的集合,设置该集合的祖先为u1 对u的每个孩子v:   1.1 tarjan之   1.2 合并v到父节点u的集合,确保集合的祖 ...

  3. 求LCA最近公共祖先的在线倍增算法模板_C++

    倍增求 LCA 是在线的,而且比 ST 好写多了,理解起来比 ST 和 Tarjan 都容易,于是就自行脑补吧,代码写得容易看懂 关键理解 f[i][j] 表示 i 号节点的第 2j 个父亲,也就是往 ...

  4. cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!

    2450. 距离 ★★   输入文件:distance.in   输出文件:distance.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...

  5. LCA最近公共祖先 ST+RMQ在线算法

    对于一类题目,是一棵树或者森林,有多次查询,求2点间的距离,可以用LCA来解决.     这一类的问题有2中解决方法.第一种就是tarjan的离线算法,还有一中是基于ST算法的在线算法.复杂度都是O( ...

  6. LCA(最近公共祖先)之倍增算法

    概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介 ...

  7. HDU2586.How far away ?——近期公共祖先(离线Tarjan)

    http://acm.hdu.edu.cn/showproblem.php?pid=2586 给定一棵带权有根树,对于m个查询(u,v),求得u到v之间的最短距离 那么仅仅要求得LCA(u,v),di ...

  8. POJ - 1470 Closest Common Ancestors(离线Tarjan算法)

    1.输出测试用例中是最近公共祖先的节点,以及这个节点作为最近公共祖先的次数. 2.最近公共祖先,离线Tarjan算法 3. /* POJ 1470 给出一颗有向树,Q个查询 输出查询结果中每个点出现次 ...

  9. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

随机推荐

  1. Python学习笔记:PEP8常用编程规范

    PEP8编码规范是一种非常优秀的编码规范,也得到了Python程序员的普遍认可,如果实践中或者项目中没有统一的编码规范,建议尽量遵循PEP8编码规范,当然如果项目中已经有了自身的编码规范,应当优先遵循 ...

  2. ./vi: line 2: mkdir: command not found

    当前两天博主在写脚本的时候,运行脚本时候总是出现此消息,很郁闷, 开始我以为可能是我mkdir的函数库依赖的问题,但是当我用其他的脚本创建 目录的时候,命令又可以用了,找了半天,终于找到了答案 --- ...

  3. BZOJ 1441: Min(裴蜀定理)

    BZOJ 1441:Min Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数 ...

  4. 笔记-python-coroutine

    笔记-python-coroutine 1.      协程 1.1.    协程的概念 协程,又称微线程,纤程.英文名Coroutine.协程是一种用户态的轻量级线程. 线程是系统级别的,它们是由操 ...

  5. Javascript Step by Step - 04

    前言 本篇主要讨论jQuery的常用的若干操作.为了能直观的显示操作的结果,首先建立一个html文件,内容如下: <!DOCTYPE html> <html> <head ...

  6. WIN8、WIN7访问Windows Server 2003服务器的数据库速度很慢、远程速度很慢的解决方法

    原因是微软在WIN7开始上加入了网络速度限制.在控制台执行以下命令即可解决: netsh interface tcp set global autotuninglevel=disabled

  7. [转]个人对AutoResetEvent和ManualResetEvent的理解

    仅个人见解,不对之处请指正,谢谢. 一.作用 AutoResetEvent和ManualResetEvent可用于控制线程暂停或继续,拥有重要的三个方法:WaitOne.Set和Reset. 这三个方 ...

  8. Android之SeekBar总结(一)

    2015-04-24 SeekBar: 一种特殊的进度条,包含一个滑块用于调节进度值. API 中目录结构如下: 包含几种特殊的属性: 1: max:设置进度条的最大值 .对应方法:setMax(in ...

  9. 操作App.config的类(转载)

    http://www.cnblogs.com/yaojiji/archive/2007/12/17/1003191.html 操作App.config的类 public class DoConfig  ...

  10. 《大道至简》第一章 编程的精义 java伪代码形式

    愚公.这位名家身上,浓缩了项目组织者.团队经理.编程人员.技术分析师等众多角色的优秀素质. 愚公移山事件分析: 原始需求:惩山北之塞,出入之迂 项目沟通方式:聚室而某曰 项目目标:毕力平险,指通豫南, ...