题目背景

Grant喜欢带着他的小狗Pandog散步。Grant以一定的速度沿着固定路线走,该路线可能自交。Pandog喜欢游览沿途的景点,不过会在给定的N个点和主人相遇。小狗和主人同时从(X1,Y1)点出发,并同时在(Xn,Yn)点汇合。小狗的速度最快是Grant的两倍。当主人从一个点以直线走向另一个点时,Pandog跑向一个它感兴趣的景点。Pandog每次与主人相遇之前最多只去一个景点。

题目描述

你现在的任务是:为Pandog寻找一条路线(有可能与主人的路线部分相同),使它能够游览最多的景点,并能够准时与主人在给定地点相遇或者汇合。

输入输出格式

输入格式:

输入文件第一行是两个整数N和M( 1≤N,M≤100 );

输入文件第二行的N个坐标给出了Grant的散步路线,即Pandog和主人相遇地点;

输入文件第三行的M个坐标给出了所有Pandog感兴趣的景点。

所有输入的坐标均不相同,且绝对值不超过1000。

输出格式:

输出小狗的移动路线。

第一行是经过的点数,第二行依次为经过的点的坐标(直角坐标系)

输入输出样例

输入样例#1: 复制

4 5
1 4 5 7 5 2 -2 4
-4 -2 3 9 1 2 -1 3 8 -3
输出样例#1: 复制

6
1 4 3 9 5 7 5 2 1 2 -2 4

说明

"The way is wrong!"表示输出方案错误(可能是坐标不存在输入文件中,两个相遇点间存在多个景点,或距离超出范围)

 题解

  我可能根本没有学过二分图……

  我们发现,当主人以直线走向下一个景点,小狗就会跑向一个景点,或者直接去与主人汇合的点

  换句话说,每一次汇合后,小狗都有两种选择,去景点,或去汇合点

  那么这两种选择很明显是不一样的,我们把它们看做二分图中的两边的点

  怎么判断某一个点是否和左边有连接呢?就看从那个汇合点到该点再到下一个汇合点的路程是否小于直接到汇合点的两倍

  然后可以先预处理出所有边,只要求出最大匹配就行了

  然后方案就是左边的点加上左边点的匹配

 //minamoto
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
struct node{
int x,y;
node(){}
node(int x,int y):x(x),y(y){}
}x[N],y[N];
int mp[N][N],Pre[N],vis[N];
int n,m;
double dis(node x,node y){
double a=x.x-y.x,b=x.y-y.y;
return sqrt(a*a+b*b);
}
bool dfs(int i,int tm){
for(int j=;j<n;++j)
if(vis[j]!=tm&&mp[i][j]){
vis[j]=tm;
if(!Pre[j]||dfs(Pre[j],tm)){
Pre[j]=i;return true;
}
}
return false;
}
int main(){
n=read(),m=read();
for(int i=;i<=n;++i){
int a=read(),b=read();x[i]=node(a,b);
}
for(int i=;i<=m;++i){
int a=read(),b=read();y[i]=node(a,b);
}
for(int i=;i<n;++i)
for(int j=;j<=m;++j)
if(dis(x[i],x[i+])>(dis(x[i],y[j])+dis(y[j],x[i+]))/2.0)
mp[j][i]=;
int ans=;
for(int i=;i<=m;++i){
if(dfs(i,i)) ++ans;
}
printf("%d\n",ans+n);
for(int i=;i<n;++i){
printf("%d %d ",x[i].x,x[i].y);
if(Pre[i]) printf("%d %d ",y[Pre[i]].x,y[Pre[i]].y);
}
printf("%d %d\n",x[n].x,x[n].y);
return ;
}

洛谷P2526 [SHOI2001]小狗散步(二分图匹配)的更多相关文章

  1. [SHOI2001] 小狗散步 - 二分图匹配

    考虑到每次与主人相遇之前最多只去一个景点,很容易转化为匹配问题 由于数据很小,我们不妨枚举每个相遇点间隙和每个景点,判断是否来得及,如果来得及就连边 沙雕题搞了二十来分钟,我是憨憨 #include ...

  2. [P2526][SHOI2001]小狗散步

    Link: P2526 传送门 Solution: 一道提示非常到位的题目 题面中强调了在两个路径相邻点间只能再去至多一个点,且每个点只计算一次贡献 于是明显可以将原题看作询问在两个不相交点集间最多能 ...

  3. luoguP2526_[SHOI2001]小狗散步_二分图匹配

    luoguP2526_[SHOI2001]小狗散步_二分图匹配 题意: Grant喜欢带着他的小狗Pandog散步.Grant以一定的速度沿着固定路线走,该路线可能自交.Pandog喜欢游览沿途的景点 ...

  4. SHOI2001 小狗散步

    题目传送门 感觉这题最大的难点是发现它的解法是二分图最大匹配 主人的路线是固定的,对于每一段的路线,我们可以枚举小狗想去的景点,如果时间够,我们就将这段路线的起点和小狗想去的点连起来 这样就形成了一个 ...

  5. 洛谷$P1155$ 双栈排序 贪心+二分图匹配

    正解:贪心+二分图匹配 解题报告: 传送门$QwQ$ 跪了,,,我本来以为我$NOIp$做得差不多了,,,然后康了一眼发现没做多少啊其实$QAQ$ 然后来康题趴$QwQ$ 首先考虑如果只有一个栈的情况 ...

  6. [luoguP2526] [SHOI2001]小狗散步(二分图最大匹配)

    传送门 简直就是模板题啊! #include <cmath> #include <cstdio> #include <cstring> #include <i ...

  7. luogu2526 [SHOI2001]小狗散步

    注意一个景点只能去一次. #include <iostream> #include <cstring> #include <cstdio> #include < ...

  8. 洛谷P2756 飞行员配对方案问题(二分图匹配)

    P2756 飞行员配对方案问题 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其 ...

  9. 洛谷 P2756 飞行员配对方案问题 (二分图匹配)

    题目链接:P2756 飞行员配对方案问题 题意 给定 \(m\) 个外籍飞行员和 \(n - m\) 个英国飞行员,每一架飞机需要一名英国飞行员和一名外籍飞行员,求最多能派出几架飞机. 思路 最大流 ...

随机推荐

  1. VS编译linux项目生成静态库并在另一个项目中静态链接的方法

    VS2017也推出很久了,在单位的时候写linux的服务端程序只能用vim,这让用惯了IDE的我很难受. 加上想自己撸一套linux上的轮子,决定用VS开工远程编写调试linux程序. 在window ...

  2. 侯捷STL学习(二)--序列容器测试

    第六节:容器之分类和各种测试(四) stack不提供iterator操作,破坏了容器的独特性,先进先出. 使用容器multiset(允许元素重复) 内部是红黑树,insert操作就保证了排好了序. 标 ...

  3. Task用法(2)-任务等待wait

    1.Wait 用法   默认情况下,Task 是有线程池中的异步线程执行,是否执行完成,可以通过Task的的属性IsCompleted 来判断,  如果想在子线程工作完成之后,在进行后续主线程工作可以 ...

  4. 自定义数据校验(4)---demo3---bai

    工具类:CharUtil package com.etc.util; import java.util.regex.Pattern; public class CharUtil { public st ...

  5. 第二章 深入分析Java I/O的工作机制(待续)

    Java的I/O类库的基本架构 磁盘I/O工作机制 网络I/O工作机制 NIO的工作方式 I/O调优 设计模式解析之适配器模式 设计模式解析之装饰器模式 适配器模式与装饰器模式的区别

  6. java 多线程系列基础篇(一)

    多线程状态图: Thread类的两个方法比较: yield方法: Yield是一个静态的原生(native)方法 Yield告诉当前正在执行的线程把运行机会交给线程池中拥有相同优先级的线程. Yiel ...

  7. [mpm_winnt:error] [pid 28120:tid 15980] (OS 10038)在一个非套接字上尝试了一个操作。 : AH00332: winnt_accept: getsockname error on listening socket, is IPv6 available?

    解决办法一: 可能是安装了某些程序修改了Winsock,使用netsh winsock reset 命令修复Winsock重启计算机即可! 解决办法二: 在httpd.conf文件中添加 Win32D ...

  8. Android实现智能提示的文本输入框AutoCompleteTextView

    今天我们要讲一个十分简单的内容,就是一个安卓控件的使用,用法很简单,但是很常用的一个.这里我用两种不同的写法来处理.当然,无论用哪一种写法,效果都是一样的. 我们先来看效果图. 要实现这种效果十分简单 ...

  9. 人工智能二之Sublime Text3环境配置

    1.在Ubuntu中按CTRL+ALT+T打开命令窗口,按下面步骤和命令进行安装即可: 添加sublime text 3的仓库: sudo add-apt-repository ppa:webupd8 ...

  10. TabHost两种不同的实现方式

    第一种:继承TabActivity,从TabActivity中用getTabHost()方法获取TabHost.只要定义具体Tab内容布局就行了 第二种:不用继承TabActivity,在布局文件中定 ...