[bzoj5472] 数列
Description
输入一个长度为n的数组{ai}(1 <= i <= n)
问有多少个长度为n的数组{xi}(1 <= i <= n),满足1 <= xi <= ai。
并且相邻两项的最大公约数小于等于k。
换句话说,对于1<i <= n,满足gcd(xi−1,xi) <= k。
问这样的数组{xi}有多少个,答案对1000000007取模。
Input
第一行两个整数n,k。接下来一行n个整数,表示数组{ai}。
1 <= ai,k <= 1000000。Sigma(ai) <= 1000000。
Output
一行一个整数表示这样的数组的个数,对1000000007取模。
Sample Input
9 2
1 2 3 4 5 6 7 8 9
Sample Output
168852
Solution
考虑\(dp\),
设\(f_{i,j}\)表示当前选到第\(i\)个数了,这个数选的是\(j\)。
显然可以得到转移:
\]
这个是\(O(n^2)\)的,不能接受,考虑针对后面的\(\gcd\)化简式子,莫比乌斯反演一波可以得到:
\]
中间都是一些套路的化简,这里不赘述了。
然后设:
\]
这个可以\(O(n\log n)\)预处理出来。
设:
\]
这个每次转移都是\(O(lim\cdot \log lim)\),总复杂度\(O(n\log n)\)。
所以转移可以写成这样:
\]
这个可以枚举约数\(O(n\log n)\)。
所以,总复杂度为\(O(n\log n)\)。
#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std;
const int mod = 1000000007;
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
const int maxn = 2e6+10;
vector <int > f[maxn];
int g[maxn],mu[maxn],pri[maxn],tot,vis[maxn],k,n,lim[maxn],h[maxn],G[maxn];
void sieve() {
mu[1]=1;
for(int i=2;i<maxn;i++) {
if(!vis[i]) pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<maxn;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
mu[i*pri[j]]=-mu[i];
}
}
for(int t=1;t<maxn;t++)
for(int d=t;d<maxn&&d<=k*t;d+=t) g[d]+=mu[t];
}
int main() {
read(n),read(k);
sieve();
for(int i=1;i<=n;i++) {
read(lim[i]);
for(int j=0;j<=lim[i]+1;j++) f[i].push_back(0);
}
for(int i=1;i<=lim[1];i++) f[1][i]=1;
for(int i=2;i<=n;i++) {
for(int j=1;j<=lim[i];j++) h[j]=0; // ATTENTION lim[i] !
for(int j=1;j<=lim[i-1];j++)
for(int u=j;u<=lim[i-1];u+=j) h[j]=(h[j]+f[i-1][u])%mod;
for(int t=1;t<=lim[i];t++)
for(int d=t;d<=lim[i];d+=t)
f[i][d]=(1ll*f[i][d]+1ll*h[t]*g[t]%mod)%mod;
}
int ans=0;
for(int i=1;i<=lim[n];i++) ans=(ans+f[n][i])%mod;
write((ans%mod+mod)%mod);
return 0;
}
[bzoj5472] 数列的更多相关文章
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- BZOJ1500[NOI2005]维修数列
Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一 ...
- PAT 1049. 数列的片段和(20)
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1 ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- fibonacci数列(五种)
自己没动脑子,大部分内容转自:http://www.jb51.net/article/37286.htm 斐波拉契数列,看起来好像谁都会写,不过它写的方式却有好多种,不管用不用的上,先留下来再说. 1 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 洛谷 P1182 数列分段Section II Label:贪心
题目描述 对于给定的一个长度为N的正整数数列A[i],现要将其分成M(M≤N)段,并要求每段连续,且每段和的最大值最小. 关于最大值最小: 例如一数列4 2 4 5 1要分成3段 将其如下分段: [4 ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
- 代码的坏味道(4)——过长参数列(Long Parameter List)
坏味道--过长参数列(Long Parameter List) 特征 一个函数有超过3.4个入参. 问题原因 过长参数列可能是将多个算法并到一个函数中时发生的.函数中的入参可以用来控制最终选用哪个算法 ...
随机推荐
- ABAP调用WebService时日期类型问题
在使用ABAP调用WebService时, 提示CX_SY_CONVERSION_NO_DATE_TIME,意思是日期格式不能转化. 究其原因是ABAP里没有相应的数据类型与WebService描述里 ...
- php集成开发环境xampp的搭建
一:运维闲谈 作为一名linux运维工程师,在确保能够有熟练的服务器的搭建和维护优化技能的前提,还需对自身解决问题方法上做出一番功夫. 如何为自己的运维工作添砖加瓦,自动化运维便变得非常重要,一方面, ...
- tcl之array操作
- DrawGrid 做图片显示 代码简单 参考性强 (Delphi7)
运行效果图 源码 http://files.cnblogs.com/lwm8246/DrawGrid_demo.rar procedure TfrmMain.GridDrawCell(Send ...
- HDU3853 概率DP
LOOPS Homura wants to help her friend Madoka save the world. But because of the plot of the Boss I ...
- poj 1957 二分搜索
题意:N个灯泡离地H_i,满足H1 = A ,Hi = (Hi-1 + Hi+1)/2 – 1,HN = B ,求最小B. 思路: 只要二分第二个灯泡的高度就可以推出全部灯泡的高度 如果hi<0 ...
- 笔记-twisted
笔记-twisted 1. 简介 Twisted is an event-driven networking engine written in Python and licensed un ...
- dfs序线段树
dfs序+线段树,啥?如果在一棵树上,需要你修改一些节点和查询一些节点,如果直接dfs搜的话肯定超时,那用线段树?树结构不是区间啊,怎么用?用dfs序将树结构转化为一个区间,就能用线段树进行维护了. ...
- 我理解中的Hadoop HDFS分布式文件系统
一,什么是分布式文件系统,分布式文件系统能干什么 在学习一个文件系统时,首先我先想到的是,学习它能为我们提供什么样的服务,它的价值在哪里,为什么要去学它.以这样的方式去理解它之后在日后的深入学习中才能 ...
- 15 Django组件-中间件
中间件 中间件的概念 中间件顾名思义,是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出.因为改变的是全局,所以需要谨慎实用,用不好 ...