Description

输入一个长度为n的数组{ai}(1 <= i <= n)

问有多少个长度为n的数组{xi}(1 <= i <= n),满足1 <= xi <= ai。

并且相邻两项的最大公约数小于等于k。

换句话说,对于1<i <= n,满足gcd(xi−1,xi) <= k。

问这样的数组{xi}有多少个,答案对1000000007取模。

Input

第一行两个整数n,k。接下来一行n个整数,表示数组{ai}。

1 <= ai,k <= 1000000。Sigma(ai) <= 1000000。

Output

一行一个整数表示这样的数组的个数,对1000000007取模。

Sample Input

9 2
1 2 3 4 5 6 7 8 9

Sample Output

168852

Solution

考虑\(dp\),

设\(f_{i,j}\)表示当前选到第\(i\)个数了,这个数选的是\(j\)。

显然可以得到转移:

\[f_{i,j}=\sum_{x=1}^{lim_{i-1}}f_{i-1,x}[\gcd(j,x)\leqslant k]
\]

这个是\(O(n^2)\)的,不能接受,考虑针对后面的\(\gcd\)化简式子,莫比乌斯反演一波可以得到:

\[f_{i,j}=\sum_{T|j}\sum_{t|T}\mu(t)[\frac{T}{t}\leqslant k]\sum_{x=1}^{\frac{lim_{i-1}}{T}}f_{i-1,xT}
\]

中间都是一些套路的化简,这里不赘述了。

然后设:

\[g(n)=\sum_{t|n}\mu(t)[\frac{n}{t}\leqslant k]
\]

这个可以\(O(n\log n)\)预处理出来。

设:

\[h(x)=\sum_{i=1}^{\frac{lim_{i-1}}{x}}f_{i-1,ix}
\]

这个每次转移都是\(O(lim\cdot \log lim)\),总复杂度\(O(n\log n)\)。

所以转移可以写成这样:

\[f_{i,j}=\sum_{t|j}g(t)h(t)
\]

这个可以枚举约数\(O(n\log n)\)。

所以,总复杂度为\(O(n\log n)\)。

#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std; const int mod = 1000000007; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} const int maxn = 2e6+10; vector <int > f[maxn]; int g[maxn],mu[maxn],pri[maxn],tot,vis[maxn],k,n,lim[maxn],h[maxn],G[maxn]; void sieve() {
mu[1]=1;
for(int i=2;i<maxn;i++) {
if(!vis[i]) pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<maxn;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
mu[i*pri[j]]=-mu[i];
}
}
for(int t=1;t<maxn;t++)
for(int d=t;d<maxn&&d<=k*t;d+=t) g[d]+=mu[t];
} int main() {
read(n),read(k);
sieve();
for(int i=1;i<=n;i++) {
read(lim[i]);
for(int j=0;j<=lim[i]+1;j++) f[i].push_back(0);
}
for(int i=1;i<=lim[1];i++) f[1][i]=1;
for(int i=2;i<=n;i++) {
for(int j=1;j<=lim[i];j++) h[j]=0; // ATTENTION lim[i] !
for(int j=1;j<=lim[i-1];j++)
for(int u=j;u<=lim[i-1];u+=j) h[j]=(h[j]+f[i-1][u])%mod;
for(int t=1;t<=lim[i];t++)
for(int d=t;d<=lim[i];d+=t)
f[i][d]=(1ll*f[i][d]+1ll*h[t]*g[t]%mod)%mod;
}
int ans=0;
for(int i=1;i<=lim[n];i++) ans=(ans+f[n][i])%mod;
write((ans%mod+mod)%mod);
return 0;
}

[bzoj5472] 数列的更多相关文章

  1. C#求斐波那契数列第30项的值(递归和非递归)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  2. BZOJ1500[NOI2005]维修数列

    Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一 ...

  3. PAT 1049. 数列的片段和(20)

    给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1 ...

  4. 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

    对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...

  5. fibonacci数列(五种)

    自己没动脑子,大部分内容转自:http://www.jb51.net/article/37286.htm 斐波拉契数列,看起来好像谁都会写,不过它写的方式却有好多种,不管用不用的上,先留下来再说. 1 ...

  6. js中的斐波那契数列法

    //斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...

  7. 洛谷 P1182 数列分段Section II Label:贪心

    题目描述 对于给定的一个长度为N的正整数数列A[i],现要将其分成M(M≤N)段,并要求每段连续,且每段和的最大值最小. 关于最大值最小: 例如一数列4 2 4 5 1要分成3段 将其如下分段: [4 ...

  8. 剑指Offer面试题:8.斐波那契数列

    一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...

  9. 代码的坏味道(4)——过长参数列(Long Parameter List)

    坏味道--过长参数列(Long Parameter List) 特征 一个函数有超过3.4个入参. 问题原因 过长参数列可能是将多个算法并到一个函数中时发生的.函数中的入参可以用来控制最终选用哪个算法 ...

随机推荐

  1. 1189: [HNOI2007]紧急疏散evacuate

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3831  Solved: 1119[Submit][Status][Discuss] Descript ...

  2. POJ1286 Necklace of Beads(Polya定理)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9359   Accepted: 3862 Description Beads ...

  3. 多线程(threading module)

    一.线程与进程 线程定义:线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不 ...

  4. python__高级 : 类当作装饰器

    类在创建对象时,会调用 __init__ 初始化一些东西 , 然后 如果类中定义了 __call__ 方法,可以直接用  对象()  这种方法调用,所以可以用类来装饰函数: class Test(ob ...

  5. tcl之文件操作

  6. [Codeforces967C]Stairs and Elevators(二分查找)

    [不稳定的传送门] Sloution 每次试一下最近的2个楼梯或者电梯就行了 Code #include <cstdio> #include <algorithm> #incl ...

  7. Leetcode 701. 二叉搜索树中的插入操作

    题目链接 https://leetcode.com/problems/insert-into-a-binary-search-tree/description/ 题目描述 给定二叉搜索树(BST)的根 ...

  8. ST表学习

    啊谈不上学习了.复习一下原理留一下板子. $f\left[i,j \right]$表示以$i$为起点,区间长度为${2}^{j}$的区间最值.以最小值为例,即 $min\left(a\left [ k ...

  9. 网络编程介绍(uninx/windows)

    1.网络中进程之间如何通信? 2.Socket是什么? 3.socket的基本操作 3.1.socket()函数 3.2.bind()函数 3.3.listen().connect()函数 3.4.a ...

  10. 1 Mongodb安装

    1.NoSQL简介 NoSQL,全名Not Only SQL,指的是非关系型的数据库 随着访问量的上升,网站的数据库性能出现了问题,于是NoSQL被设计出来了 优点.缺点 优点 高扩展性 分布式计算 ...