一、HBase集成MapReduce

1、查看HBase集成MapReduce需要的jar包

[root@hadoop-senior hbase-0.98.6-hadoop2]# bin/hbase mapredcp
2019-05-22 16:23:46,814 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
/opt/modules/hbase-0.98.6-hadoop2/lib/hbase-common-0.98.6-hadoop2.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/protobuf-java-2.5.0.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/hbase-client-0.98.6-hadoop2.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/hbase-hadoop-compat-0.98.6-hadoop2.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/hbase-server-0.98.6-hadoop2.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/hbase-protocol-0.98.6-hadoop2.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/high-scale-lib-1.1.1.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/zookeeper-3.4.5.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/guava-12.0.1.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/htrace-core-2.04.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/netty-3.6.6.Final.jar

2、

##开启yarn
[root@hadoop-senior hadoop-2.5.0]# sbin/yarn-daemon.sh start nodemanager
[root@hadoop-senior hadoop-2.5.0]# sbin/mr-jobhistory-daemon.sh start histryserver
[root@hadoop-senior hadoop-2.5.0]# sbin/mr-jobhistory-daemon.sh start historyserver ##HBase默认带的MapReduce程序都在hbase-server-0.98.6-hadoop2.jar里面,比较有用 [root@hadoop-senior hbase-0.98.6-hadoop2]# export HBASE_HOME=/opt/modules/hbase-0.98.6-hadoop2
[root@hadoop-senior hbase-0.98.6-hadoop2]# export HADOOP_HOME=/opt/modules/hadoop-2.5.0
[root@hadoop-senior hbase-0.98.6-hadoop2]# HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase mapredcp` $HADOOP_HOME/bin/yarn jar $HBASE_HOME/lib/hbase-server-0.98.6-hadoop2.jar An example program must be given as the first argument.
Valid program names are:
CellCounter: Count cells in HBase table
completebulkload: Complete a bulk data load.
copytable: Export a table from local cluster to peer cluster
export: Write table data to HDFS.
import: Import data written by Export.
importtsv: Import data in TSV format.
rowcounter: Count rows in HBase table
verifyrep: Compare the data from tables in two different clusters. WARNING: It doesn't work for incrementColumnValues'd cells since the timestamp is changed after being appended to the log. #####
TSV
tab分割
>>student.tsv
1001 zhangsan 26 shanghai CSV
逗号分割
>>student.csv
1001,zhangsan,26,shanghai

二、编写MapReduce程序,集成HBase对表进行读取和写入数据

1、准备数据

##准备两张表,user:里面有数据,basic:没有数据
hbase(main):004:0> create 'basic', 'info'
0 row(s) in 0.4290 seconds
=> Hbase::Table – basic hbase(main):005:0> list
TABLE
basic
user
2 row(s) in 0.0290 seconds
=> ["basic", "user"] hbase(main):003:0> scan 'user'
ROW COLUMN+CELL
10002 column=info:age, timestamp=1558343570256, value=30
10002 column=info:name, timestamp=1558343559457, value=wangwu
10002 column=info:qq, timestamp=1558343612746, value=231294737
10002 column=info:tel, timestamp=1558343607851, value=231294737
10003 column=info:age, timestamp=1558577830484, value=35
10003 column=info:name, timestamp=1558345826709, value=zhaoliu
10004 column=info:address, timestamp=1558505387829, value=shanghai
10004 column=info:age, timestamp=1558505387829, value=25
10004 column=info:name, timestamp=1558505387829, value=zhaoliu
3 row(s) in 0.0190 seconds hbase(main):006:0> scan 'basic'
ROW COLUMN+CELL
0 row(s) in 0.0100 seconds

2、编写MapReduce,将user表中的数据导入到basic表中

package com.beifeng.senior.hadoop.hbase;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Mutation;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class User2BasicMapReduce extends Configured implements Tool { // Mapper Class
public static class ReadUserMapper extends TableMapper<Text, Put> { private Text mapOutputKey = new Text(); @Override
public void map(ImmutableBytesWritable key, Result value,
Mapper<ImmutableBytesWritable, Result, Text, Put>.Context context)
throws IOException, InterruptedException {
// get rowkey
String rowkey = Bytes.toString(key.get()); // set
mapOutputKey.set(rowkey); // --------------------------------------------------------
Put put = new Put(key.get()); // iterator
for (Cell cell : value.rawCells()) {
// add family : info
if ("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))) {
// add column: name
if ("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))) {
put.add(cell);
}
// add column : age
if ("age".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))) {
put.add(cell);
}
}
} // context write
context.write(mapOutputKey, put);
} } // Reducer Class
public static class WriteBasicReducer extends TableReducer<Text, Put, //
ImmutableBytesWritable> { @Override
public void reduce(Text key, Iterable<Put> values,
Reducer<Text, Put, ImmutableBytesWritable, Mutation>.Context context)
throws IOException, InterruptedException {
for(Put put: values){
context.write(null, put);
}
} } // Driver
public int run(String[] args) throws Exception { // create job
Job job = Job.getInstance(this.getConf(), this.getClass().getSimpleName()); // set run job class
job.setJarByClass(this.getClass()); // set job
Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs // set input and set mapper
TableMapReduceUtil.initTableMapperJob(
"user", // input table
scan, // Scan instance to control CF and attribute selection
ReadUserMapper.class, // mapper class
Text.class, // mapper output key
Put.class, // mapper output value
job //
); // set reducer and output
TableMapReduceUtil.initTableReducerJob(
"basic", // output table
WriteBasicReducer.class, // reducer class
job//
); job.setNumReduceTasks(1); // at least one, adjust as required // submit job
boolean isSuccess = job.waitForCompletion(true) ; return isSuccess ? 0 : 1;
} public static void main(String[] args) throws Exception {
// get configuration
Configuration configuration = HBaseConfiguration.create(); // submit job
int status = ToolRunner.run(configuration,new User2BasicMapReduce(),args) ; // exit program
System.exit(status);
} }

3、执行

##打jar包,并上传到$HADOOP_HOME/jars/

##执行
export HBASE_HOME=/opt/modules/hbase-0.98.6-hadoop2
export HADOOP_HOME=/opt/modules/hadoop-2.5.0
HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase mapredcp` $HADOOP_HOME/bin/yarn jar $HADOOP_HOME/jars/hbase-mr-user2basic.jar ##查看执行结果
hbase(main):004:0> scan 'basic'
ROW COLUMN+CELL
10002 column=info:age, timestamp=1558343570256, value=30
10002 column=info:name, timestamp=1558343559457, value=wangwu
10003 column=info:age, timestamp=1558577830484, value=35
10003 column=info:name, timestamp=1558345826709, value=zhaoliu
10004 column=info:age, timestamp=1558505387829, value=25
10004 column=info:name, timestamp=1558505387829, value=zhaoliu
3 row(s) in 0.0300 seconds

2.8-2.10 HBase集成MapReduce的更多相关文章

  1. HBase概念学习(七)HBase与Mapreduce集成

    这篇文章是看了HBase权威指南之后,依据上面的解说搬下来的样例,可是略微有些不一样. HBase与mapreduce的集成无非就是mapreduce作业以HBase表作为输入,或者作为输出,也或者作 ...

  2. HBase 与 MapReduce 集成

    6. HBase 与 MapReduce 集成 6.1 官方 HBase 与 MapReduce 集成 查看 HBase 的 MapReduce 任务的执行:bin/hbase mapredcp; 环 ...

  3. hbase运行mapreduce设置及基本数据加载方法

    hbase与mapreduce集成后,运行mapreduce程序,同时需要mapreduce jar和hbase jar文件的支持,这时我们需要通过特殊设置使任务可以同时读取到hadoop jar和h ...

  4. hive与hbase集成

    http://blog.csdn.net/vah101/article/details/22597341 这篇文章最初是基于介绍HIVE-705.这个功能允许Hive QL命令访问HBase表,进行读 ...

  5. Hbase框架原理及相关的知识点理解、Hbase访问MapReduce、Hbase访问Java API、Hbase shell及Hbase性能优化总结

    转自:http://blog.csdn.net/zhongwen7710/article/details/39577431 本blog的内容包含: 第一部分:Hbase框架原理理解 第二部分:Hbas ...

  6. 《HBase in Action》 第三章节的学习总结 ---- 如何编写和运行基于HBase的MapReduce程序

    HBase之所以与Hadoop是最好的伙伴,我理解就因为两点:1.HADOOP的HDFS,为HBase提供了分布式的存储方式:2.HADOOP的MR为HBase提供的分布式的计算方法.u 其中第一点, ...

  7. 3.12-3.16 Hbase集成hive、sqoop、hue

    一.Hbase集成hive https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration 1.说明 Hive与HBase整合在一起 ...

  8. 新闻实时分析系统Hive与HBase集成进行数据分析 Cloudera HUE大数据可视化分析

    1.Hue 概述及版本下载 1)概述 Hue是一个开源的Apache Hadoop UI系统,最早是由Cloudera Desktop演化而来,由Cloudera贡献给开源社区,它是基于Python ...

  9. 新闻实时分析系统Hive与HBase集成进行数据分析

    (一)Hive 概述 (二)Hive在Hadoop生态圈中的位置 (三)Hive 架构设计 (四)Hive 的优点及应用场景 (五)Hive 的下载和安装部署 1.Hive 下载 Apache版本的H ...

随机推荐

  1. node.js如何读取MySQL数据

    先安装mysql模块. node.js默认安装时,模块文件放在 /usr/local/lib/node_modules 这个目录下,为了便宜管理,模块还是统一安装到这里好. $ cd /usr/loc ...

  2. com关于IUnknown接口

    com定义的每个接口都必须从IUnknown继承过来,主要原因是IUnknown接口提供了两个很重要的特性:生存期控制和接口查询. 客户程序仅仅能通过接口与com对象进行通信.尽管客户程序能够无论对象 ...

  3. Use the command of tar to multi-part archive method.

    We usually meet the package too large to upload internat space when upload have a limited .So we nee ...

  4. 【每日Scrum】第七天(4.28)Sprint2总结性会议

    本次会议主要是演示了一下本组项目的各项功能,每个人负责那一块儿功能由本人来负责说明和演示,确定alpha版本的发布时间,并且分派了各组员的文档负责情况,上图是会议记录,下面我详细介绍一下我组分派情况: ...

  5. Python遍历列表

    #循环遍历列表 nums = [ss,gg,e,fff,bb] #while循环遍历,但是不推荐使用,因为还要把列表的元素数出来 i = 0 while i<5: print(nums[i]) ...

  6. Android调用JNI本地方法经过有点改变

    方法注册好后要经过哪些路 Android一个异常捕获项目 https://github.com/xroche/coffeecatch coffeecatch CoffeeCatch, a tiny n ...

  7. 2016最新手机号码正则、身份证JS正则表达式

    js最新手机号码.身份证正则表达式   身份证正则: //身份证正则表达式(15位) isIDCard1=/^[1-9]\d{7}((0\d)|(1[0-2]))(([0|1|2]\d)|3[0-1] ...

  8. JavaScript通过正则随机生成电话号码

    没有接口,就只能自己模拟Json数据了 恰好需要模拟一些电话号码,我又懒得自己随便写, 不如写一个小功能就用来实现随机生成电话号码 <!DOCTYPE html> <html lan ...

  9. linux快捷键及主要命令(转载)

    作者:幻影快递Linux小组 翻译 2004-10-05 22:03:01 来自:Linux新手管理员指南(中文版) 5.1 Linux基本的键盘输入快捷键和一些常用命令 5.2 帮助命令 5.3 系 ...

  10. thinkphp3.2独立分组的建立

    很简单,就是把默认的Home模块复制一份,放到Admin目录下,同时把namespace改成namespace Admin\Controller即可,配置项如下: