surface models

1. The two main methods of creating surface models are interpolation and triangulation

interpolation: we use it to help developing 3D surfaces, which is a digital representation of features, either real or hypothetical(假定的), in three-dimensional space.

Otherwise, extrapolation is to predict the value of an attribute at sites outside the area covered by existing observations

2. people need 3D surfaces to do surface analysis, which implies the analysis of continuous spatial variation. The most common application of surface analysis is digital elevation modelling (DEM).

3. A 3D surface is usually derived or calculated from continuous or  noncontinuous surfaces (point, line, polygons) and converted it into a digital 3D surface

4. ArcGIS can create and store four types of surface models: raster, triangulated irregular network (TIN), terrain datasets, and LAS datasets.

TIN

1. TINs 保存输入数据的所有精度(preserve all the precision), 对已知点的值进行建模

2. TINs是一种基于矢量(vector-based)的数字地理数据形式(digital geographic data),将通过对一组顶点(vertices)进行三角测量(triangulating)来构建。顶点与一系列边相连,形成三角形网络

3. A TIN expects units to be in meters, not decimal degrees.

4. Method of interpolation to form these triangles:  Delaunay triangulation or distance ordering.

5. raster surface models在工作效率、使用范围以及价位上都优于TINs,TINs主要用于较小区域内的高精度建模

Raster

1. Interpolation根据有限数量的采样数据点预测cells in a raster的值,可用于预测任何地点的未知数据,如海拔、降雨量、化学浓度和噪音水平等

Interpolation

1. everything is connected, but that near things are more related than those far apart

2.Need to define or quantify that relationship to interpolate

3.Works under the principle of the continuous field data model

4. Need a high density of data for it to be reliable( 需要高密度数据以确保可靠性 )

5. Need to use an interpolator that can represent the process you are modelling

Interpolation methods

1. Global interpolators( Prediction for the whole area of interest ): Trend surface analysis+Regression( 回归 )

2. Local interpolators( Operate within a small zone around the point being interpolated ):Nearest neighbours: Tiessen polygons,Delaunay triangulation( 三角测量 )+IDW(Inverse Distance interpolation)+Splines

3. Geostatistical: Kriging

#IDW assumes that unknown value is influenced more by nearby than far away points, but we can control how rapid that decayis, however there is no method of testing for the quality of predictions

Lecture 3的更多相关文章

  1. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

  2. note of introduction of Algorithms(Lecture 3 - Part1)

    Lecture 3(part 1) Divide and conquer 1. the general paradim of algrithm as bellow: 1. divide the pro ...

  3. codeforces 499B.Lecture 解题报告

    题目链接:http://codeforces.com/problemset/problem/499/B 题目意思:给出两种语言下 m 个单词表(word1, word2)的一一对应,以及 profes ...

  4. Nobel Lecture, December 12, 1929 Thermionic phenomena and the laws which govern them

    http://www.nobelprize.org/nobel_prizes/physics/laureates/1928/richardson-lecture.pdf OWEN W. RICHARD ...

  5. Jordan Lecture Note-1: Introduction

    Jordan Lecture Note-1: Introduction 第一部分要整理的是Jordan的讲义,这份讲义是我刚进实验室时我们老师给我的第一个任务,要求我把讲义上的知识扩充出去,然后每周都 ...

  6. Jordan Lecture Note-3: 梯度投影法

    Jordan Lecture Note-3:梯度投影法 在这一节,我们介绍如何用梯度投影法来解如下的优化问题: \begin{align} \mathop{\min}&\quad f(x)\n ...

  7. Jordan Lecture Note-2: Maximal Margin Classifier

    Maximal Margin Classifier Logistic Regression 与 SVM 思路的不同点:logistic regression强调所有点尽可能远离中间的那条分割线,而SV ...

  8. [CF Round #294 div2] E. A and B and Lecture Rooms 【树上倍增】

    题目链接:E. A and B and Lecture Rooms 题目大意 给定一颗节点数10^5的树,有10^5个询问,每次询问树上到xi, yi这两个点距离相等的点有多少个. 题目分析 若 x= ...

  9. Codeforces Round #287 D.The Maths Lecture

    The Maths Lecture 题意:求存在后缀Si mod k =0,的n位数的数目.(n <=1000,k<=100); 用f[i][j]代表 长为i位,模k等于j的数的个数. 可 ...

  10. Lecture Halls

    Lecture Halls (会议安排)   时间限制(普通/Java):1000MS/10000MS     运行内存限制:65536KByte 总提交: 38            测试通过: 2 ...

随机推荐

  1. Ubuntu 18.04 Python3.6.6导入wx模块报Gtk-Message : 17:06:05.797 :Failed to load module "canberra-gtk-module"

    解决办法: root@sishen:~# apt-get install libcanberra-gtk-module

  2. Mysql修改server uuid

    在主从复制的时候如果第二个虚拟机是复制过去的,需要修改 https://blog.csdn.net/pratise/article/details/80413198 1. 首先要查找到mysql的安装 ...

  3. JS中比较的数值如何比较大小

    <script type="text/javascript"> function check_num(){ var num=document.getElementByI ...

  4. SLF4J user manual 专题

    System Out and Err Redirected to SLF4J The sysout-over-slf4j module allows a user to redirect all ca ...

  5. Webstorm 激活

    注册时,在打开的License Activation窗口中选择“License server”,在输入框输入下面的网址: http://idea.iteblog.com/key.php 点击:Acti ...

  6. 如何构建多模块的SpringBoot项目

    通过阅读本文你将了解到:如何将已有SpringBoot项目改成多模块 & 如何新构建多模块SpringBoot项目 以下示例基于我正在使用的order(订单服务)进行演示,无论你用的是什么项目 ...

  7. go语言简单的soap调用方法

    package main import ( "bytes" "encoding/xml" "fmt" "io" &quo ...

  8. python3发送邮件01(简单例子,不带附件)

    # -*- coding:utf-8 -*-import smtplibfrom email.header import Headerfrom email.mime.text import MIMET ...

  9. dstat参数选项

    Usage: dstat [-afv] [options..] [delay [count]]Versatile tool for generating system resource statist ...

  10. MySQL数据库详解(三)MySQL的事务隔离剖析

    提到事务,你肯定不陌生,和数据库打交道的时候,我们总是会用到事务.最经典的例子就是转账,你要给朋友小王转 100 块钱,而此时你的银行卡只有 100 块钱. 转账过程具体到程序里会有一系列的操作,比如 ...