Lecture 3
surface models
1. The two main methods of creating surface models are interpolation and triangulation
interpolation: we use it to help developing 3D surfaces, which is a digital representation of features, either real or hypothetical(假定的), in three-dimensional space.
Otherwise, extrapolation is to predict the value of an attribute at sites outside the area covered by existing observations
2. people need 3D surfaces to do surface analysis, which implies the analysis of continuous spatial variation. The most common application of surface analysis is digital elevation modelling (DEM).
3. A 3D surface is usually derived or calculated from continuous or noncontinuous surfaces (point, line, polygons) and converted it into a digital 3D surface
4. ArcGIS can create and store four types of surface models: raster, triangulated irregular network (TIN), terrain datasets, and LAS datasets.
TIN
1. TINs 保存输入数据的所有精度(preserve all the precision), 对已知点的值进行建模
2. TINs是一种基于矢量(vector-based)的数字地理数据形式(digital geographic data),将通过对一组顶点(vertices)进行三角测量(triangulating)来构建。顶点与一系列边相连,形成三角形网络
3. A TIN expects units to be in meters, not decimal degrees.
4. Method of interpolation to form these triangles: Delaunay triangulation or distance ordering.
5. raster surface models在工作效率、使用范围以及价位上都优于TINs,TINs主要用于较小区域内的高精度建模
Raster
1. Interpolation根据有限数量的采样数据点预测cells in a raster的值,可用于预测任何地点的未知数据,如海拔、降雨量、化学浓度和噪音水平等
Interpolation
1. everything is connected, but that near things are more related than those far apart
2.Need to define or quantify that relationship to interpolate
3.Works under the principle of the continuous field data model
4. Need a high density of data for it to be reliable( 需要高密度数据以确保可靠性 )
5. Need to use an interpolator that can represent the process you are modelling
Interpolation methods
1. Global interpolators( Prediction for the whole area of interest ): Trend surface analysis+Regression( 回归 )
2. Local interpolators( Operate within a small zone around the point being interpolated ):Nearest neighbours: Tiessen polygons,Delaunay triangulation( 三角测量 )+IDW(Inverse Distance interpolation)+Splines
3. Geostatistical: Kriging
#IDW assumes that unknown value is influenced more by nearby than far away points, but we can control how rapid that decayis, however there is no method of testing for the quality of predictions
Lecture 3的更多相关文章
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- note of introduction of Algorithms(Lecture 3 - Part1)
Lecture 3(part 1) Divide and conquer 1. the general paradim of algrithm as bellow: 1. divide the pro ...
- codeforces 499B.Lecture 解题报告
题目链接:http://codeforces.com/problemset/problem/499/B 题目意思:给出两种语言下 m 个单词表(word1, word2)的一一对应,以及 profes ...
- Nobel Lecture, December 12, 1929 Thermionic phenomena and the laws which govern them
http://www.nobelprize.org/nobel_prizes/physics/laureates/1928/richardson-lecture.pdf OWEN W. RICHARD ...
- Jordan Lecture Note-1: Introduction
Jordan Lecture Note-1: Introduction 第一部分要整理的是Jordan的讲义,这份讲义是我刚进实验室时我们老师给我的第一个任务,要求我把讲义上的知识扩充出去,然后每周都 ...
- Jordan Lecture Note-3: 梯度投影法
Jordan Lecture Note-3:梯度投影法 在这一节,我们介绍如何用梯度投影法来解如下的优化问题: \begin{align} \mathop{\min}&\quad f(x)\n ...
- Jordan Lecture Note-2: Maximal Margin Classifier
Maximal Margin Classifier Logistic Regression 与 SVM 思路的不同点:logistic regression强调所有点尽可能远离中间的那条分割线,而SV ...
- [CF Round #294 div2] E. A and B and Lecture Rooms 【树上倍增】
题目链接:E. A and B and Lecture Rooms 题目大意 给定一颗节点数10^5的树,有10^5个询问,每次询问树上到xi, yi这两个点距离相等的点有多少个. 题目分析 若 x= ...
- Codeforces Round #287 D.The Maths Lecture
The Maths Lecture 题意:求存在后缀Si mod k =0,的n位数的数目.(n <=1000,k<=100); 用f[i][j]代表 长为i位,模k等于j的数的个数. 可 ...
- Lecture Halls
Lecture Halls (会议安排) 时间限制(普通/Java):1000MS/10000MS 运行内存限制:65536KByte 总提交: 38 测试通过: 2 ...
随机推荐
- CodeForces - 287B-Pipeline(二分)
Vova, the Ultimate Thule new shaman, wants to build a pipeline. As there are exactly n houses in Ult ...
- Oracle ERP Interface堵住--Request Running too long time,查找Request执行的Sql
Request Running too long time 堵住了INV Manager 导致INV Interface Pending 很多笔资料 Review 发现Request 实际执行SQL ...
- Java浏览器下载文件为excel(springMVC方式)
action中的方法 /** * Excel文件下载处理 * @return */ @RequestMapping("/downloanExcel") public ModelAn ...
- c# 基础字符串
ToLower():得到字符串的小写形式.注意字符串是不可变的,所以这些函数都不会直接改变字符串的内容,而是把修改后的字符串的值通过函数返回值的形式返回.s.ToLower()与s=s.ToLower ...
- 初学Vue.js(2.x版本)
首先肯定是打开官网查看文档了,没想到我太高估了自己,看的我头晕也不知道到底说了个啥.没办法,只能另寻他法,好在有菜鸟教程.然而我还是想多了,不稀饭一点点看下去,只想快点明白它到底说了个啥.嗯,找来找去 ...
- C# 报表和打印等
说到报表打印.那就不得不说需要查数据库了,然后填写报表信息.设计报表用的 grid++. 查数据库时候,我也是醉了,直接一个表自身与自身级联了4次...一共取了7个表的信息数据. 关于级联--(表字段 ...
- C++拾遗(七)——关联容器
关联容器(Associative containers)支持通过键来高效地查找和读取元素.两个基本的关联容器类型是 map 和set.map 的元素以键-值(key-value)对的形式组织:键用作元 ...
- 安装新版REDIS
http://redis.io/ # wget http://download.redis.io/redis-stable.tar.gz tar zxvf redis-stable.tar.gz -C ...
- AHK进阶之路
本文摘自 http://www.cnblogs.com/echorep/p/4911117.html 小鸟学AHK(1)之运行程序或打开文档 AHK就是AutoHotKey,是一款免费的.Wind ...
- JAVA多线程编程——JAVA内存模型
一.何为“内存模型” 内存模型描述了程序中各个变量(实例域.静态域和数组元素)之间的关系,以及在实际计算机系统中将变量存储到内存和从内存中取出变量这样的底层细节,对象最终是存储在内存里面的,但是编译器 ...