题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1205

题意:中文题诶~

思路:johnson模板题

流水作业调度问题的Johnson算法:

(1)令N1={i|ai<bi}, N2={i|ai>=bi};

(2)将N1中作业按ai的非减序排序;将N2中作业按bi的非增序排序;

(3)N1中作业接N2中作业构成满足Johnson法则的最优调度。

关于johnson算法详细讲解:http://blog.csdn.net/liufeng_king/article/details/8678316

代码:

 #include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std; const int MAXN = 5e4+;
struct node{
int x, y, cnt;
}gg[MAXN]; bool cmp(node a, node b){
return a.cnt < b.cnt;
} bool cmp1(node a, node b){
return a.x < b.x;
} bool cmp2(node a, node b){
return a.y > b.y;
} int main(void){
int n;
scanf("%d", &n);
for(int i=; i<n; i++){
scanf("%d%d", &gg[i].x, &gg[i].y);
gg[i].cnt = gg[i].x-gg[i].y;
}
sort(gg, gg+n, cmp);
int index = ;
while(gg[index].cnt < ){
index++;
}
sort(gg, gg+index, cmp1);
sort(gg+index, gg+n, cmp2);
int ans = gg[].x + gg[].y;
int sum = gg[].x;
for(int i=; i<n; i++){
sum += gg[i].x;
ans = max(sum, ans) + gg[i].y;
}
printf("%d\n", ans);
return ;
}

51nod1205(johnson)的更多相关文章

  1. Johnson 全源最短路径算法

    解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...

  2. [未完成]scikit-learn一般实例之九:用于随机投影嵌入的Johnson–Lindenstrauss lemma边界

    Johnson–Lindenstrauss 引理表明任何高维数据集均可以被随机投影到一个较低维度的欧氏空间,同时可以控制pairwise距离的失真. 理论边界 由一个随机投影P所引入的失真是确定的,这 ...

  3. 【动态规划】流水作业调度问题与Johnson法则

    1.问题描述:     n个作业{1,2,…,n}要在由2台机器M1和M2组成的流水线上完成加工.每个作业加工的顺序都是先在M1上加工,然后在M2上加工.M1和M2加工作业i所需的时间分别为ai和bi ...

  4. codevs3008加工生产调度(Johnson算法)

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...

  5. 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson

    根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...

  6. spring (由Rod Johnson创建的一个开源框架)

    你可能正在想“Spring不过是另外一个的framework”.当已经有许多开放源代码(和专有)J2EEframework时,我们为什么还需要Spring Framework? Spring是独特的, ...

  7. Rod Johnson

    Spring Framework创始人,著名作者. Rod在悉尼大学不仅获得了计算机学位,同时还获得了音乐学位.更令人吃惊的是在回到软件开发领域之前,他还获得了音乐学的博士学位. 有着相当丰富的C/C ...

  8. Johnson算法:多源最短路算法

    Johnson算法 请不要轻易点击标题 一个可以在有负边的图上使用的多源最短路算法 时间复杂度\(O(n \cdot m \cdot log \ m+n \cdot m)\) 空间复杂度\(O(n+m ...

  9. Johnson算法学习笔记

    \(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快 ...

随机推荐

  1. svn 出现冲突时可以使用 meld . 命令合并。 而git的冲突合并详见内容

    1.可以在任意目录使用 git mergetool --tool-help    查看 git 所支持的merge tools. 2.可以使用如下配置去设置merge tool 和 diff tool ...

  2. 20170326 ABAP调用外部webservice 问题

    1.SE80 创建企业服务: 代理生成:出现错误 库处理程序中出现例外 错误的值:未知类型参考ns1:ArrayOfMLMatnrResource 尝试: 一.测试本地文件:---无效 1. 将网址链 ...

  3. 使用了Tomcat JDBC连接池不能重连的问题

    在项目中用到了tomcat 的jdbc连接池,发现一个问题是,当数据库重启时,服务没有重新的去连接数据库,需要将部署的项目重新启动才能连接到数据库.经过测试对配置做一下修改: 在配置dataSourc ...

  4. 安装pymysqlpool并使用(待补充)

    pip3 install PyMysqlPool 第一个错,提示没有装c++ 14.0,下载安装报下一个错 error: Setup script exited with error: Microso ...

  5. LeetCode:N叉树的最大深度【559】

    LeetCode:N叉树的最大深度[559] 题目描述 给定一个N叉树,找到其最大深度. 最大深度是指从根节点到最远叶子节点的最长路径上的节点总数. 例如,给定一个 3叉树 : 我们应返回其最大深度, ...

  6. PAT 甲级 1007. Maximum Subsequence Sum (25) 【最大子串和】

    题目链接 https://www.patest.cn/contests/pat-a-practise/1007 思路 最大子列和 就是 一直往后加 如果 sum < 0 就重置为 0 然后每次 ...

  7. Codeforces Round #551 (Div. 2) A~E题解

    突然发现上一场没有写,那就补补吧 本来这场应该5题的,结果一念之差E fail了 A. Serval and Bus 基本数学不解释,假如你没有+1 -1真的不好意思见人了 #include<c ...

  8. 吴恩达机器学习笔记(十二) —— Application Example: Photo OCR(完)

    主要内容: 一.Photo OCR 二.Getting lots of data:artificial data synthesis 三.Ceiling analysis 一.Photo OCR Ph ...

  9. 51nod 40分算法题

    1737:见前2篇随笔. 1677:题意:给定一个n节点树,一个整数k,n个节点任意选k个出来,对于每一种选择方案,ans累加上使这k个点联通的最小边数,输出ans%1e9+7. 一句话题解:考虑每一 ...

  10. centos7在VMware下配置网络连接

    安装成功以后,首先更改vmwar的虚拟网络设置 1.参考连接:http://www.cnblogs.com/liongis/p/3265458.html 2.然后将虚拟机的设置里面将网络配置的连接方式 ...