洛谷 [P3620] 数据备份
贪心神题
首先我们发现一个显然的贪心策略,连接相邻两个写字楼总是更优.
所以本题就变成了数轴上一堆点,要选 k 个彼此不相邻的区间,使得区间长度最小
对于 10000 的数据来说,我们可以用 DP 解决,
f[i][j]表示考虑前i个点,已经形成j对点的最小距离,num[i]表示第i个点的坐标。
如果这个点不与其他点组成一对,那么f[i][j]=f[i-1][j]。
否则这个点只能和前面的点组成一对,f[i][j]=f[i-2][j-1]+num[i]-num[i-1]。
f[i][j]=min(f[i-1][j],f[i-2][j-1]+num[i]-num[i-1]);
时间复杂度O(nk) ,可以滚动数组优化过。
对于全部数据来说,我们有一种非常奇特的贪心
这里有一个非常精妙的转化。假设在原先的n个点上有abcde5个相邻点(a<b<c<d<e),我们把它差分以后就是ab,bc,cd,de四个值。
假设bc是最小的那个,我们贪心把bc选出来,然后加入答案以后删除。之后我们同时把与bc相邻的ab,cd取出来。把这三个值全都删除后合成一个新的值,这个值=ab+cd-bc。那么如果我们再次通过贪心原则把这个ab+cd-bc选出来加入答案,那么其中的-bc会和一开始选择的bc抵消,相当于我们这两次选择了ab+cd,也就是与bc相邻的两段。每一次选择会把已选择的段的数量+1,所以选择k次以后的ans就是最优解, 这类似于网络流的退流操作
我们需要用链表维护每个元素的前驱后继, 并且需要维护一个可以删除任意一个元素(不只是根元素)的堆,
这里有两种操作, 如果维护的值比较小,可以维护一个 bool 数组来标记被删除的元素, 如果被维护的元素很大, 我们需要维护一个删除堆, 每次询问的时候,比较删除堆与
原堆的堆顶, 如果一样就 pop
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#define ll long long
using namespace std;
const int MAXN = 100005;
int init() {
int rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return fh * rv;
}
int n, k, loc[MAXN], num[MAXN], pre[MAXN], nxt[MAXN];
struct node {
int wei, id;
bool operator < (const node & b) const{
return b.wei < wei;
}
};
priority_queue<node> hea;
bool del[MAXN];
ll ans;
int main() {
n = init(); k = init();
for(int i = 1; i <= n; i++) {
loc[i] = init();
if(i >= 2) {
num[i - 1] = loc[i] - loc[i - 1];
hea.push((node){num[i - 1], i - 1});
}
}
for(int i = 1; i <= n; i++) {
pre[i] = i - 1; nxt[i] = i + 1;
}
nxt[0] = 1; nxt[n] = 0;
num[0] = num[n] = 0x3f3f3f3f;
for(int i = 1; i <= k; i++) {
while(del[hea.top().id]) hea.pop();
ans += hea.top().wei;int x = hea.top().id; hea.pop();
int l = pre[x], r = nxt[x];
del[l] = del[r] = 1;
hea.push((node){num[x] = num[l] + num[r] - num[x], x});
pre[x] = pre[l]; nxt[x] = nxt[r];
pre[nxt[r]] = x; nxt[pre[l]] = x;
}
cout << ans << endl;
return 0;
}
洛谷 [P3620] 数据备份的更多相关文章
- 洛谷P3620 数据备份
好吧,我一开始说这是个神级数据结构毒瘤题,后来改成神题了. 主要是贪心做法的巧妙转化: 首先发现选择的一对必须相邻,于是我们搞出差分. 然后考虑选取最小值时,最小值两侧的数要么同时选,要么都不选. 然 ...
- 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)
洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...
- 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- 洛谷P3620 [APIO/CTSC 2007] 数据备份 [堆,贪心,差分]
题目传送门 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽 ...
- 洛谷P3620 [APIO/CTSC 2007] 数据备份
题目 贪心+堆. 一般贪心题用到堆的时候都会存在一种反悔操作,因此这个题也不例外. 首先电缆一定是连接两个相邻的点的,这很好证明,其次一个点只能被一条电缆连接,所以我们通过选这个电缆,不选相邻电缆和选 ...
- 洛谷$P3620\ [APIO/CTSC 2007]$数据备份 贪心
正解:贪心 解题报告: 传送门$QwQ$ $umm$感觉这种问题还蛮经典的,,,就选了某个就不能选另一个这样儿,就可以用堆模拟反悔操作 举个$eg$,如果提出了$a_i$,那就$a_{i-1}$和$a ...
- Solution -「APIO/CTSC 2007」「洛谷 P3620」数据备份
\(\mathcal{Description}\) Link. 给定升序序列 \(\{x_n\}\) 以及整数 \(k\),在 \(\{x_n\}\) 中选出恰 \(k\) 对 \((x_i, ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 【洛谷1607】【USACO09FEB】庙会班车
题面 题目描述 逛逛集市,兑兑奖品,看看节目对农夫约翰来说不算什么,可是他的奶牛们非常缺乏锻炼--如果要逛完一整天的集市,他们一定会筋疲力尽的.所以为了让奶牛们也能愉快地逛集市,约翰准备让奶牛们在集市 ...
随机推荐
- Vue源码学习一 ———— Vue项目目录
Vue 目录结构 可以在 github 上通过这款 Chrome 插件 octotree 查看Vue的文件目录.也可以克隆到本地.. Vue 是如何规划目录的 scripts ------------ ...
- 爬虫学习(五)——使用handler管理器对象进行数据爬取的步骤
# 使用管理器对象进行爬取数据的步骤 import urllib.requesturl = "https://www.baidu.com/"# 创建handler的管理器对象han ...
- kubernetes搭建dashboard报错
warningconfigmaps is forbidden: User "system:serviceaccount:kube-system:kubernetes-dashboard&qu ...
- B1020 月饼(25 分)
B1020 月饼(25 分) 月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼.现给定所有种类月饼的库存量.总售价.以及市场的最大需求量,请你计算可以获得的最大收益是多少. 注意 ...
- 标准C++中string类的用法总结
相信使用过MFC编程的朋友对CString这个类的印象应该非常深刻吧?的确,MFC中的CString类使用起来真的非常的方便好用.但是如果离开了MFC框架,还有没有这样使用起来非常方便的类呢?答案是肯 ...
- [Hdu3555] Bomb(数位DP)
Description 题意就是找0到N有多少个数中含有49. \(1\leq N \leq2^{63}-1\) Solution 数位DP,与hdu3652类似 \(F[i][state]\)表示位 ...
- PAT Advanced 1001
1001 A+B Format (20 分) Calculate a+b and output the sum in standard format -- that is, the digits mu ...
- Apache虚拟主机测试
一.虚拟机主机简介 部署多个站点,每个站点,希望用不同的域名和站点目录,或者是不同的端口,或不同的ip,就需要虚拟主机功能.简单的说一个http服务要配置多个站点,就需要虚拟主机.(一句话一个http ...
- 03012_会话技术Cookie&Session
1.会话技术简介 (1)存储客户端的技术 网站的购物系统,用户将购买的商品信息存储到哪里?因为Http协议是无状态的,也就是说每个客户访问服务器端资源时,服务器并不知道该客户端是谁,所以需要会话技术识 ...
- Apache shiro学习总结
Apache shiro集群实现 (一) shiro入门介绍 Apache shiro集群实现 (二) shiro 的INI配置 Apache shiro集群实现 (三)shiro身份认证(Shiro ...