向量内积(bzoj 3243)
Description
两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即:
.jpg)
现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数。请帮助她解决这个问题
Input
Output
Sample Input
0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1
1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0
Sample Output
/*
不得不说,题解很神奇。
很容易想到,向量i和j的点积就是原矩阵A和A^T的i行j列的元素,但是直接求是(O)n^2m的。
所以用到一些黑科技。。。
考虑mod=2时,假设对于i,我们求出i之前的所有向量与i的点积的和;
如果所有的点积都>0即=1,那么显然点积的和对二取模=(i-1)%2;
否则如果≠(i-1)%2,显然i与i前面的某一个向量的点积=0,我们O(ND)寻找答案即可。
但是这样不一定能得到解,我们不妨随机打乱向量的顺序然后判断。
当mod=3时也是一样的,不过点积>0并不一定=1,但是注意到点积的平方>0则一定=1,把点积拆开来计算即可。
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#define N 100010
#define M 110
using namespace std;
int n,m,mod,a[N][M],b[M],c[M][M];
bool check(int x,int y){
int tmp=;
for(int i=;i<=m;i++) tmp+=a[x][i]*a[y][i];
return !(tmp%mod);
}
int solve(int x){
int ans=;
if(mod==)
for(int i=;i<=m;b[i]^=a[x][i],i++)
ans^=b[i]&a[x][i];
else
for(int i=;i<=m;i++)
for(int j=;j<=m;c[i][j]+=a[x][i]*a[x][j],j++)
ans+=c[i][j]*a[x][i]*a[x][j];
return ans%mod;
}
int main(){
scanf("%d%d%d",&n,&m,&mod);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&a[i][j]),a[i][j]%=mod;
for(int i=;i<=n;i++){
if(solve(i)==(i-)%mod) continue;
for(int j=;j<i;j++)
if(check(i,j)){
printf("%d %d\n",j,i);
return ;
}
}
printf("-1 -1\n");
return ;
}
向量内积(bzoj 3243)的更多相关文章
- 3243: [Noi2013]向量内积 - BZOJ
Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...
- [BZOJ]3243 向量内积(Noi2013)
小C做了之后很有感觉的题目之一,但因为姿势不对调了很久. Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即 ...
- 【BZOJ-3243】向量内积 随机化 + 矩阵
3243: [Noi2013]向量内积 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1249 Solved: ...
- [Noi2013]向量内积
来自FallDream的博客,未经允许,请勿转载,谢谢. 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: $\sum_{i=1 ...
- 【BZOJ3243】【NOI2013】向量内积(矩阵,数论)
[BZOJ3243][NOI2013]向量内积(矩阵,数论) 题面 BZOJ 题解 这题好神仙. 首先\(60\)分直接是送的.加点随机之类的可以多得点分. 考虑正解. 我们先考虑一下暴力. 我们把\ ...
- LOJ 2664. 「NOI2013」向量内积 解题报告
#2664. 「NOI2013」向量内积 两个 \(d\) 维向量 \(A=[a_1, a_2 ,...,a_d]\) 与 \(B=[b_1 ,b_2 ,...,b_d]\) 的内积为其相对应维度的权 ...
- 【fake题解】[NOI2013]向量内积
[fake题解][NOI2013]向量内积 做法1 大暴力.哪里不会T哪里. 做法2 所有数都%=k不影响结果.(废话 k的取值只有2和3,所以肯定是要分类讨论的.k=2肯定简单些啦. k=2 出现的 ...
- P1224 [NOI2013]向量内积
传送门 发现这个内积和矩乘有点像,考虑构造一个 $n$ 行 $m$ 列的矩阵 $A$,每一行都是一个题目给定的 $m$ 维向量 设 $B=AA^T$ ,其中 $A^T$ 为 $A$ 的转置矩阵,那么对 ...
- luogu P1224 [NOI2013]向量内积
传送门 挺有意思的一道题 暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分 然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向 ...
- BZOJ 3243 向量内积
Description 两个\(d\)维向量\(A=[a_{1},a_{2},...,a_{d}]\)与\(B=[b_{1},b_{2},...,b_{d}]\)的内积为其相对应维度的权值的乘积和,即 ...
随机推荐
- STL笔记(に)--vector容器
Vector 1.可变长的动态数组 2.需包含头文件#include<vector> (当然,如果用了万能头文件#include<bits/stdc++.h>则可忽略) 3.支 ...
- 洛谷P3374树状数组1
下有彩蛋(from https://www.cnblogs.com/wuwangchuxin0924/p/5921130.html)树状数组的blog写的最好的是这位//https://www.cnb ...
- PAT 乙级 1003
题目 题目地址:PAT 乙级 1003 题解 规律观察题,本题的关键在于把题读懂,同时还有几个比较容易疏忽的地方需要注意:总之这道题要考虑的东西更多,细节上也要特别注意: 规律:“如果 aPbTc 是 ...
- Linux下重要日志及查看方式
1.Linux下重要日志文件介绍 /var/log/boot.log 该文件记录了系统在引导过程中发生的事件,就是Linux系统开机自检过程显示的信息,如图1所示: 图1 /var/log/boot. ...
- Aliyun ECS简单的安装nginx(1.8.0)
1. yum install gcc-c++ 2. yum install -y pcre pcre-devel 3. yum install -y zlib zlib-devel 4. yum in ...
- Ansible学习 Inventory文件
Ansible可同时操作属于一个组的多台主机,组与主机之间关系配置在inventory文件中,inventory默认的配置文件是/etc/ansible/hosts 1.在/etc/ansible/h ...
- Nordic Collegiate Programming Contest (NCPC) 2016
A Artwork B Bless You Autocorrect! C Card Hand Sorting D Daydreaming Stockbroker 贪心,低买高卖,不要爆int. #in ...
- TI C6000 优化进阶:循环最重要!
软件流水循环 1. C6000流水线(Pipeline) 一个指令的处理过程并不是一步完成,它被分为三个阶段:取指(Fetch).译码(Decode).执行(Excute).将每一个阶段放入独立的流程 ...
- Java面向对象---类与对象的关系
类是对某一类事物的描述,是抽象的.概念上的意义.对象是实际存在的该类事物的每一个个体,也被称为实例. 创建对象:包括声明对象和实例化对象 Person person;//声明 person = new ...
- MySQL之架构与历史(一)
MySQL架构与历史 和其他数据库系统相比,MySQL有点与众不同,它的架构可以在多种不同的场景中应用并发挥好的作用,但同时也会带来一点选择上的困难.MySQL并不完美,却足够灵活,它的灵活性体现在很 ...