A prime number is a counting number (1, 2, 3, ...) that is evenly divisible only by 1 and itself. In this problem you are to write a program that will cut some number of prime numbers from the list of prime numbers between (and including) 1 and N. Your program will read in a number N; determine the list of prime numbers between 1 and N; and print the C*2 prime numbers from the center of the list if there are an even number of prime numbers or (C*2)-1 prime numbers from the center of the list if there are an odd number of prime numbers in the list.

Input

Each input set will be on a line by itself and will consist of 2 numbers. The first number (1 <= N <= 1000) is the maximum number in the complete list of prime numbers between 1 and N. The second number (1 <= C <= N) defines the C*2 prime numbers to be printed from the center of the list if the length of the list is even; or the (C*2)-1 numbers to be printed from the center of the list if the length of the list is odd.

Output

For each input set, you should print the number N beginning in column 1 followed by a space, then by the number C, then by a colon (:), and then by the center numbers from the list of prime numbers as defined above. If the size of the center list exceeds the limits of the list of prime numbers between 1 and N, the list of prime numbers between 1 and N (inclusive) should be printed. Each number from the center of the list should be preceded by exactly one blank. Each line of output should be followed by a blank line. Hence, your output should follow the exact format shown in the sample output.

Sample Input

21 2
18 2
18 18
100 7

Sample Output

21 2: 5 7 11

18 2: 3 5 7 11

18 18: 1 2 3 5 7 11 13 17

100 7: 13 17 19 23 29 31 37 41 43 47 53 59 61 67

问数字范围在 l 到 r 内的数中,大小排最中间的2k-1或者2k个是哪些

暴力

 #include<cstdio>
#include<iostream>
#include<cstring>
#define LL long long
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
bool mk[];
int p[],len;
int rnk[];
inline void getp()
{
p[++len]=;rnk[]=;
for (int i=;i<=;i++)
{
if (!mk[i])
{
p[++len]=i;
rnk[i]=len;
for (int j=*i;j<=;j+=i)mk[j]=;
}
}
}
int main()
{
getp();
while (~scanf("%d%d",&n,&m))
{
if (n<=)continue;
printf("%d %d:",n,m);
while (mk[n])n--;
int ls=rnk[n],l,r;
if (ls&)l=max(ls/+-m+,),r=min(ls/++m-,ls);
else l=max(ls/-m+,),r=min(ls/+m,ls);
for (int i=l;i<=r;i++)
{
printf(" %d",p[i]);
}
puts("\n");
}
}

poj 1595

[暑假集训--数论]poj1595 Prime Cuts的更多相关文章

  1. [暑假集训--数论]poj1365 Prime Land

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...

  2. [暑假集训--数论]poj3518 Prime Gap

    The sequence of n − 1 consecutive composite numbers (positive integers that are not prime and not eq ...

  3. POJ1595 Prime Cuts

    Prime Cuts Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11961   Accepted: 4553 Descr ...

  4. [暑假集训--数论]hdu2136 Largest prime factor

    Everybody knows any number can be combined by the prime number. Now, your task is telling me what po ...

  5. [暑假集训--数论]poj2262 Goldbach's Conjecture

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in whic ...

  6. [暑假集训--数论]poj2909 Goldbach's Conjecture

    For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 ...

  7. [暑假集训--数论]poj2773 Happy 2006

    Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD ...

  8. [暑假集训--数论]hdu1019 Least Common Multiple

    The least common multiple (LCM) of a set of positive integers is the smallest positive integer which ...

  9. [暑假集训--数论]poj2115 C Looooops

    A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != ...

随机推荐

  1. 安装CentOS6.9虚拟机

    安装CentOS6.9 之前在学习项目时,都是用的按键好的虚拟机.这次自己也尝试搭建一下.(虽然也是google的) 首先大部分过程都是参考https://blog.csdn.net/pengpeng ...

  2. Bootstrap历练实例:响应式布局

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  3. 如何利用WordPress的菜单功能实现友情链接功能?

    导语:对于wordpress网站的友情链接,有很多种方法可以实现,例如我们可以利用WordPress的链接功能,或者利用WordPress的菜单功能.本文章介绍的是如何利用菜单功能来实现友情链接. 前 ...

  4. 第三篇、Swift基础学习

    1.常量与变量 什么是常量和变量 在Swift中规定:在定义一个标识符时必须明确说明该标识符是一个常量还是变量 使用let来定义常量,定义之后不可以修改 使用var来定义变量,定义之后可以修改 变量的 ...

  5. Express框架 --router/app.use

    翻看去年自己记录的印象笔记,准备把笔记上的一些内容也同时更新到博客上,方便自己查看. 1.app.use和app.get的区别及解析 app.use(path,callback)中的callback既 ...

  6. Uva 填充正方形

    暴力出奇迹 #include<iostream> #include<cstdio> using namespace std; +; int T,n; char S[maxn][ ...

  7. ElasticSearch High Level REST API【2】搜索查询

    如下为一段带有分页的简单搜索查询示例 在search搜索中大部分的搜索条件添加都可通过设置SearchSourceBuilder来实现,然后将SearchSourceBuilder RestHighL ...

  8. 微信公众帐号开发之一(java)

    闲来没事,就记录一下微信公众平台的开发吧~ 其实微信公众平台开发没有想象中的那么困难,因为注册了微信公众平台帐号登录之后在开发者模式里有详细的文档,个人感觉介绍还是比较详细的. 微信公众平台订阅号和服 ...

  9. python之格式化

    python有两种方式可以格式化一种是用%s,一种使用format(2.6)进入的,从下面的代码可以看出,效果差不多. name = 'edward' age = 27 print("My ...

  10. .NET 与MVC的区别

    .NET MVC与三层架构 二者都是架构模式,并且也有一定的共存度,在实际开发中,严格区分意义不大. 基于最近涉及到这部分知识就在复习下,编程过程中,基础概念更重要,而不是技术. 1.三层架构:即UI ...