A prime number is a counting number (1, 2, 3, ...) that is evenly divisible only by 1 and itself. In this problem you are to write a program that will cut some number of prime numbers from the list of prime numbers between (and including) 1 and N. Your program will read in a number N; determine the list of prime numbers between 1 and N; and print the C*2 prime numbers from the center of the list if there are an even number of prime numbers or (C*2)-1 prime numbers from the center of the list if there are an odd number of prime numbers in the list.

Input

Each input set will be on a line by itself and will consist of 2 numbers. The first number (1 <= N <= 1000) is the maximum number in the complete list of prime numbers between 1 and N. The second number (1 <= C <= N) defines the C*2 prime numbers to be printed from the center of the list if the length of the list is even; or the (C*2)-1 numbers to be printed from the center of the list if the length of the list is odd.

Output

For each input set, you should print the number N beginning in column 1 followed by a space, then by the number C, then by a colon (:), and then by the center numbers from the list of prime numbers as defined above. If the size of the center list exceeds the limits of the list of prime numbers between 1 and N, the list of prime numbers between 1 and N (inclusive) should be printed. Each number from the center of the list should be preceded by exactly one blank. Each line of output should be followed by a blank line. Hence, your output should follow the exact format shown in the sample output.

Sample Input

21 2
18 2
18 18
100 7

Sample Output

21 2: 5 7 11

18 2: 3 5 7 11

18 18: 1 2 3 5 7 11 13 17

100 7: 13 17 19 23 29 31 37 41 43 47 53 59 61 67

问数字范围在 l 到 r 内的数中,大小排最中间的2k-1或者2k个是哪些

暴力

 #include<cstdio>
#include<iostream>
#include<cstring>
#define LL long long
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
bool mk[];
int p[],len;
int rnk[];
inline void getp()
{
p[++len]=;rnk[]=;
for (int i=;i<=;i++)
{
if (!mk[i])
{
p[++len]=i;
rnk[i]=len;
for (int j=*i;j<=;j+=i)mk[j]=;
}
}
}
int main()
{
getp();
while (~scanf("%d%d",&n,&m))
{
if (n<=)continue;
printf("%d %d:",n,m);
while (mk[n])n--;
int ls=rnk[n],l,r;
if (ls&)l=max(ls/+-m+,),r=min(ls/++m-,ls);
else l=max(ls/-m+,),r=min(ls/+m,ls);
for (int i=l;i<=r;i++)
{
printf(" %d",p[i]);
}
puts("\n");
}
}

poj 1595

[暑假集训--数论]poj1595 Prime Cuts的更多相关文章

  1. [暑假集训--数论]poj1365 Prime Land

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...

  2. [暑假集训--数论]poj3518 Prime Gap

    The sequence of n − 1 consecutive composite numbers (positive integers that are not prime and not eq ...

  3. POJ1595 Prime Cuts

    Prime Cuts Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11961   Accepted: 4553 Descr ...

  4. [暑假集训--数论]hdu2136 Largest prime factor

    Everybody knows any number can be combined by the prime number. Now, your task is telling me what po ...

  5. [暑假集训--数论]poj2262 Goldbach's Conjecture

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in whic ...

  6. [暑假集训--数论]poj2909 Goldbach's Conjecture

    For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 ...

  7. [暑假集训--数论]poj2773 Happy 2006

    Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD ...

  8. [暑假集训--数论]hdu1019 Least Common Multiple

    The least common multiple (LCM) of a set of positive integers is the smallest positive integer which ...

  9. [暑假集训--数论]poj2115 C Looooops

    A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != ...

随机推荐

  1. 稍微深入点理解C++复制控制【转】

    通过一个实例稍微深入理解C++复制控制过程,参考资料<C++ primer>,介绍点基本知识: 1.在C++中类通过特殊的成员函数:复制构造函数.赋值操作符和析构函数来控制复制.赋值和撤销 ...

  2. centos下修改docker连接docker_host默认方式为tls方式

    1.安装docker,请参考官网文档 centos下安装docker 2.安装完成应该可以使用docker的各种命令连接docker host.docker host运行在本机上,但与localhos ...

  3. 解决国内网络Python2.X 3.X PIP安装模块连接超时问题

    pip国内的一些镜像   阿里云 http://mirrors.aliyun.com/pypi/simple/   中国科技大学 https://pypi.mirrors.ustc.edu.cn/si ...

  4. 精读《sqorn 源码》

    1 引言 前端精读<手写 SQL 编译器系列> 介绍了如何利用 SQL 生成语法树,而还有一些库的作用是根据语法树生成 SQL 语句. 除此之外,还有一种库,是根据编程语言生成 SQL.s ...

  5. Android Studio 3.0 安装注意点

    在安装Android studio 3.0+ 时候,会遇到默认不带Android SDK 的问题. 在启动Android studio 后,会提示让选择SDK目录,选择下载目录,对应的去下载 那么问题 ...

  6. python3爬虫之Urllib库(一)

    上一篇我简单说了说爬虫的原理,这一篇我们来讲讲python自带的请求库:urllib 在python2里边,用urllib库和urllib2库来实现请求的发送,但是在python3种在也不用那么麻烦了 ...

  7. opencv使用日记之一:平台搭建Mat类以及图像的读取修改

    平台搭建就摸了一整天时间,真的是...不说了,最后我选择的是 opencv3.0(2015/06/04)  + win7 + vs2012   注意opencv的版本不同导入的库文件是不一样的,所以请 ...

  8. Git的安装及常用操作

    一.Git的安装 1.下载Git,官网地址为:https://git-scm.com/downloads.     2.下载完成之后,双击目录进行安装 3.选择安装目录 4.选择组件,默认即可 5.设 ...

  9. JSP自定义tag控件标签

    JSP支持自定tag的方法,那就是直接讲JSP代码保存成*.tag或者*.tagx的标签定义文件.tag和tagx文件不仅支持经典jsp代码,各种标签模版代码,还支持xml样式的jsp指令代码. 按照 ...

  10. json对象数据列数

    // var len = data.length(); // alert(data.Rows.length); var colCount = (function count(){//一条记录中有几个键 ...