EXTENDED LIGHTS OUT
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10835   Accepted: 6929

Description

In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right. 

The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged. 

Note: 
1. It does not matter what order the buttons are pressed. 
2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once. 
3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first 
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off. 
Write a program to solve the puzzle.

Input

The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.

Output

For each puzzle, the output consists of a line with the string: "PUZZLE #m", where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1's indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.

Sample Input

2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0

Sample Output

PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

题目链接:POJ 1222

对于异或方程组的高斯消元感觉用上三角的回代法做比较好,感觉化成行标准型比较麻烦,一共30的方程,首先可以假设第i个方程解第i个未知数,由于开关对自己和周围四个按钮均有影响,那么第$i$个方程的第$i$个变量代表自己,肯定系数为1,设与第$i$个位置相关的其余4个开关标号为$a_i,b_i,c_i,d_i$,那么第$i$个方程显然也与$a_i、b_i、c_i、d_i$有关,即第$i$个方程的第$a_i、b_i、c_i、d_i$位置的系数为1,其余为0(这个很重要,不相关在矩阵里用0代替,而不是不存在),然后化成上三角后用回代法从下至上得到答案。然后由于是模2意义下的加减乘除,可以发现加减法其实就是异或(对于0、1两个数的运算把加减号替换成异或符号不仅结果相同,而且还省去了取模2的麻烦),然后乘法就是做逻辑与即&&运算,除法可以用乘法的逆运算得到,由于当前处理行的要留下的系数肯定为1,然后要消元的行对应的列系数消元之前肯定也是1,因此$系数_1\oplus(*)1 \oplus(-)系数_2\oplus(*)1=系数_1\oplus系数_2$

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"ceq",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 32;
int Mat[N][N], ans[N];
int id[6][7]; void Gauasian(int neq, int nvar)
{
int ceq, cvar, i, j;
for (ceq = 1, cvar = 1; ceq <= neq && cvar <= nvar; ++ceq, ++cvar)
{
int teq = ceq;
for (i = ceq + 1; i <= neq; ++i)
if (abs(Mat[i][cvar]) > abs(Mat[teq][cvar]))
teq = i;
if (teq != ceq)
{
for (j = 1; j <= nvar + 1; ++j)
swap(Mat[ceq][j], Mat[teq][j]);
}
for (i = ceq + 1; i <= neq; ++i)
{
if (Mat[i][cvar] == 0)
continue;
for (j = cvar; j <= nvar + 1; ++j)
Mat[i][j] ^= Mat[ceq][j];
}
}
for (i = neq; i >= 1; --i)
{
ans[i] = Mat[i][nvar + 1];
for (j = i + 1; j <= nvar; ++j)
ans[i] ^= (Mat[i][j] && ans[j]);
}
}
int main(void)
{
int tcase, i, j;
scanf("%d", &tcase);
for (i = 1; i <= 5; ++i)
for (j = 1; j <= 6; ++j)
id[i][j] = (i - 1) * 6 + j;
for (int q = 1; q <= tcase; ++q)
{
CLR(Mat, 0);
CLR(ans, 0);
for (i = 1; i <= 5; ++i)
for (j = 1; j <= 6; ++j)
scanf("%d", &Mat[id[i][j]][31]);
for (i = 1; i <= 5; ++i)
{
for (j = 1; j <= 6; ++j)
{
int ID = id[i][j];
Mat[ID][ID] = 1;
if (i > 1)
Mat[ID][id[i - 1][j]] = 1;
if (i < 5)
Mat[ID][id[i + 1][j]] = 1;
if (j > 1)
Mat[ID][id[i][j - 1]] = 1;
if (j < 6)
Mat[ID][id[i][j + 1]] = 1;
}
}
Gauasian(30, 30);
printf("PUZZLE #%d\n", q);
for (i = 1; i <= 30; ++i)
printf("%d%c", ans[i], " \n"[i % 6 == 0]);
}
return 0;
}

POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)的更多相关文章

  1. POJ 1222 EXTENDED LIGHTS OUT (高斯消元)

    题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...

  2. POJ 1222 EXTENDED LIGHTS OUT [高斯消元XOR]

    题意: $5*6$网格里有一些灯告诉你一开始开关状态,按一盏灯会改变它及其上下左右的状态,问最后全熄灭需要按那些灯,保证有解 经典问题 一盏灯最多会被按一次,并且有很明显的异或性质 一个灯作为一个方程 ...

  3. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  4. 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组

    [题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...

  5. 【poj1830-开关问题】高斯消元求解异或方程组

    第一道高斯消元题目~ 题目:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关 ...

  6. hihocoder 第五十二周 高斯消元·二【高斯消元解异或方程 难点【模板】】

    题目地址:http://hihocoder.com/contest/hiho57/problem/1 输入 第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是 ...

  7. POJ 1222 熄灯问题【高斯消元】

    <题目链接> 题目大意: 有一个5*6的矩阵,每一位是0或者1. 没翻转一位,它的上下左右的数字也为改变.(0变成1,1变成0).要把矩阵中所有的数都变成0.求最少翻转次数的方案,输出矩阵 ...

  8. poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8481   Accepted: 5479 Description In an ...

  9. POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组

    http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...

随机推荐

  1. 安装CocoaPods遇到的问题 及其解决

    本人也是第一次安装这个 CocoaPods,所以刚开始也是遇到了很多懵逼的问题,今天终于搞定了,就自己总结一下,如有错误敬请指出,谢谢! 由于之前,对于终端命令行,不是很了解,总感觉很麻烦,所以也一直 ...

  2. Mybatis generator(复制粘贴完成)

    命令行模式 1.java -jar mybatis-generator-core-x.x.x.jar -configfile generatorConfig.xml 2.Maven plugin(my ...

  3. React后台管理系统-用户列表页面

    1.页面的结构 //遍历list, 返回数据       let listBody= this.state.list.map((user,index)=> {           return ...

  4. GNU C中__attribute__

    __attribute__基本介绍: 1. __attribute__ 可以设置函数属性.变量属性和类型属性. 2. __attribute__ 语法格式为:__attribute__ ((attri ...

  5. C/C++程序基础 (九)排序算法简述

    排序算法 算法复杂度 算法简述 插入排序 N2 前方有序,依次将后方无序数据插入前方合适位置. 冒泡排序 N2 前方有序,从后方两两比较,将最小泡冒到前方. 选择排序 N2 前方有序,从后方选择最小的 ...

  6. Python_深浅拷贝

    深浅拷贝 ‘copy’和'='的区别:copy会开辟一个新的空间,而‘=’不会. 浅copy只会copy第一层,再里边的就进行共享了. 需要记住的是copy之后记住的是内存寻址地址,而浅copy时如果 ...

  7. Vue2+webpack+node 配置+入门+详解

    Vue2介绍 1.vue2.0 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架. Vue 的核心库只关注视图层 采用单文件组件 复杂大型单页应用程序(SPA) 响 ...

  8. <Docker学习>1. 简介

    Q: Dokcer是什么? A: 是一种虚拟化技术.参考https://www.imooc.com/learn/867快速了解Docker. Q: 传统虚拟机技术和Dokcer的区别? A: 传统虚拟 ...

  9. stm32 flash和sram

    FLASH是用来存储程序的,SRAM是用来存储程序运行中的中间变量

  10. docker 学习(3)

    docker和宿主之间的数据共享以及docker间的数据共享仍然是让人头疼和操心的地方. 几个基本概念: docker: 一种容器管理技术,这里也指既有的开发工具链. container: 容器 im ...