poj 1081 To The Max
To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12697 Accepted Submission(s):
6090
integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater
located within the whole array. The sum of a rectangle is the sum of all the
elements in that rectangle. In this problem the sub-rectangle with the largest
sum is referred to as the maximal sub-rectangle.
As an example, the
maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4
1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1
8
and has a sum of 15.
input begins with a single positive integer N on a line by itself, indicating
the size of the square two-dimensional array. This is followed by N 2 integers
separated by whitespace (spaces and newlines). These are the N 2 integers of the
array, presented in row-major order. That is, all numbers in the first row, left
to right, then all numbers in the second row, left to right, etc. N may be as
large as 100. The numbers in the array will be in the range
[-127,127].
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<functional>
using namespace std;
const int N_MAX= +;
int a[N_MAX][N_MAX];
int sum[N_MAX][N_MAX];
int main() {
int n;
while (scanf("%d", &n) != EOF) {
memset(sum,,sizeof(sum));
memset(a, ,sizeof(a));
for (int i = ; i < n; i++) {
for (int j = ; j <= n; j++) {
scanf("%d", &a[i][j]);
}
}
for (int i = ; i < n; i++) {
for (int j = ; j <= n; j++) {
sum[i][j] =sum[i][j-]+ a[i][j];
}
} int res = -INT_MAX;
for (int i = ; i < n; i++) {//固定i,j
for (int j = i+; j <= n; j++) {
int S = ;
for (int k = ; k < n; k++) {
S += sum[k][j]-sum[k][i-];//累加上闭区间[i,j]值的和
if (S > res)
res = S;
if (S < )S = ; }
}
}
printf("%d\n",res); }
return ;
}
poj 1081 To The Max的更多相关文章
- hdu 1081 To The Max(dp+化二维为一维)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...
- hdu 1081 & poj 1050 To The Max(最大和的子矩阵)
转载请注明出处:http://blog.csdn.net/u012860063 Description Given a two-dimensional array of positive and ne ...
- POJ 1050 To the Max 暴力,基础知识 难度:0
http://poj.org/problem?id=1050 设sum[i][j]为从(1,1)到(i,j)的矩形中所有数字之和 首先处理出sum[i][j],此时左上角为(x1,y1),右下角为(x ...
- POJ 1050 To the Max -- 动态规划
题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...
- poj 1050 To the Max (简单dp)
题目链接:http://poj.org/problem?id=1050 #include<cstdio> #include<cstring> #include<iostr ...
- POJ 1050 To the Max 最大子矩阵和(二维的最大字段和)
传送门: http://poj.org/problem?id=1050 To the Max Time Limit: 1000MS Memory Limit: 10000K Total Submi ...
- poj - 1050 - To the Max(dp)
题意:一个N * N的矩阵,求子矩阵的最大和(N <= 100, -127 <= 矩阵元素 <= 127). 题目链接:http://poj.org/problem?id=1050 ...
- dp - 最大子矩阵和 - HDU 1081 To The Max
To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...
- HDU 1081 To The Max【dp,思维】
HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...
随机推荐
- SSH程序框架之Spring与HIbernate整合
spring整合hibernate 有两种方式 1.注解方式 2.xml方式实现 Spring整合Hibernate有什么好处? 1.由IOC容器来管理Hibernate的SessionFactory ...
- shell脚本,awk取中间列的方法。
解释 1.$(int(NF/2)+1) 中int(NF/2)等于3,然后加1,就得到中间的4了. 2.$(NF/2+0.5) 相当于得出的是整数.NF/2是3.5,再由3.5+0.5,所以就是4了,也 ...
- Electron的介绍
1.1 Electron是什么? 引用官网的一句话: Build cross platform desktop apps with JavaScript, HTML, and CSS 1.2 诞生 技 ...
- lua 使用递归查找键值
function cc.exports.findValueByTbl(tbl,key)--递归方法,用于查找tbl中对应的键值 for k,v in pairs(tbl) do if k == key ...
- on() 和 click() 的区别
on() 和 click() 的区别: 二者在绑定静态控件时没有区别,但是如果面对动态产生的控件,只有 on() 能成功的绑定到动态控件中. 以下实例中原先的 HTML 元素点击其身后的 Delete ...
- 【Python学习之五】高级特性2(切片、迭代、列表生成器、生成器、迭代器)
2.迭代 如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration).在Python中,迭代是通过for ... in来完成的. ...
- charles抓手机包
charles抓手机包 如果是使用charles抓包.一定要tm的保证手机和电脑连的是一个网. 1.proxy setting,查看charles,端口 2.勾选 3.ipconfig,查 ...
- OAuth认证协议中的HMACSHA1加密算法
<?php function hmacsha1($key,$data) { $blocksize=64; $hashfunc='sha1'; if (strlen($key)>$block ...
- python numpy复制array
numpy快速复制array 前段时间想到一个算法,需要实现array的自我复制,直接上代码,两种复制方式, 整体复制 a=[[10,10,50,50],[10,10,40,50]] np.tile( ...
- 转载:使用Pandas进行数据匹配
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式 ...