#6008. 「网络流 24 题」餐巾计划

题目描述

一个餐厅在相继的 n nn 天里,每天需用的餐巾数不尽相同。假设第 i ii 天需要 ri r_ir​i​​ 块餐巾。餐厅可以购买新的餐巾,每块餐巾的费用为 P PP 分;或者把旧餐巾送到快洗部,洗一块需 M MM天,其费用为 F FF 分;或者送到慢洗部,洗一块需 N NN 天,其费用为 S SS 分(S<F S < FS<F)。

每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。

试设计一个算法为餐厅合理地安排好 n nn 天中餐巾使用计划,使总的花费最小。

输入格式

第 1 11 行有 6 66 个正整数 n nn、P PP、M MM、F FF、N NN、S SS。

n nn 是要安排餐巾使用计划的天数,P PP 是每块新餐巾的费用,M MM 是快洗部洗一块餐巾需用天数,F FF 是快洗部洗一块餐巾需要的费用,N NN 是慢洗部洗一块餐巾需用天数,S SS 是慢洗部洗一块餐巾需要的费用。

接下来的 n nn 行是餐厅在相继的 n nn 天里,每天需用的餐巾数。

输出格式

输出餐厅在相继的 n nn 天里使用餐巾的最小总花费。

样例

样例输入

3 10 2 3 3 2
5
6
7

样例输出

145

数据范围与提示

1≤n≤1000 1 \leq n \leq 10001≤n≤1000

code

 #include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
const int N = ;
const int INF = 1e9; struct Edge{
int u,v,f,c,nxt;
Edge(){}
Edge(int a,int b,int flow,int cost,int nt) { //-
u = a;v = b;f = flow;c = cost;nxt = nt;
}
}e[];
int head[N],dis[N],q[],pre[N];
bool vis[N];
int L,R,S,T,tot = ,Mc,Mf; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2)?EOF:*p1++;
}
int read() {
int x = ,f = ;char ch = nc();
for (; ch<''||ch>''; ch=nc()) if (ch=='-')f=-;
for (; ch>=''&&ch<=''; ch=nc()) x=x*+ch-'';
return x*f;
}
void add_edge(int u,int v,int f,int c) {
e[++tot] = Edge(u,v,f,c,head[u]);head[u] = tot;
e[++tot] = Edge(v,u,,-c,head[v]);head[v] = tot;
}
bool spfa() {
for (int i=; i<=T; ++i) vis[i]=false,dis[i]=INF;
L = ;R = ;
dis[S] = ;
q[++R] = S;vis[S] = true;pre[S] = ;
while (L <= R) {
int u = q[L++];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].v;
if (dis[v]>dis[u]+e[i].c && e[i].f > ) {
dis[v] = dis[u] + e[i].c;
pre[v] = i;
if (!vis[v]) q[++R] = v,vis[v] = true;
}
}
vis[u] = false;
}
return dis[T]!=INF;
}
void mcf() {
int zf = INF;
for (int i=T; i!=S; i=e[pre[i]].u)
zf = min(zf,e[pre[i]].f);
for (int i=T; i!=S; i=e[pre[i]].u)
e[pre[i]].f -= zf,e[pre[i]^].f += zf;
Mf += zf;Mc += dis[T]*zf;
}
int main() {
int n = read(),c = read(),kt = read(),kc = read(),mt = read(),mc = read();
S = n*+;T = n*+;
for (int t,i=; i<=n; ++i) {
t = read();
add_edge(S,i,t,);
add_edge(i+n,T,t,);
add_edge(S,i+n,INF,c);
if (i+kt<=n) add_edge(i,i+n+kt,INF,kc);
if (i+mt<=n) add_edge(i,i+n+mt,INF,mc);
if (i+<=n) add_edge(i,i+,INF,);
}
while (spfa()) mcf();
printf("%d",Mc);
return ;
}

LOJ #6008. 「网络流 24 题」餐巾计划的更多相关文章

  1. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  2. 【刷题】LOJ 6008 「网络流 24 题」餐巾计划

    题目描述 一个餐厅在相继的 \(n\) 天里,每天需用的餐巾数不尽相同.假设第 \(i\) 天需要 \(r_i\) 块餐巾.餐厅可以购买新的餐巾,每块餐巾的费用为 \(P\) 分:或者把旧餐巾送到快洗 ...

  3. LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图

    #6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  4. Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流)

    Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流) Description 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. ...

  5. LibreOJ #6008. 「网络流 24 题」餐巾计划

    这道题其实我在刚学 OI 的时候就在一本通上看见过,还记得上面写着"新餐巾一次性买完"之类的话.当时还很稚嫩(现在也是),想了好久,根本想不出来. 学了网络流之后发现这道题的图也是 ...

  6. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  7. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  8. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  9. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

随机推荐

  1. JS实现2048

    2048这个游戏是通过对二维数组的操作来实现的,其算法核心如下: (以一行左移为例) c从0开始,遍历当前行中的元素,到<CN-1(CN是一个常量,表示的是游戏格子的列数)结束,每次+1 找到当 ...

  2. 在浏览器地址栏按回车、F5、ctrl+F5刷新页面的区别

    url地址栏里敲击enter:这样的刷新,大家可以在firebug里看一下,只有少数的请求会发送出去,而且几乎没有图片的请求,这是因为请求时会先检查本地是不是缓存了请求的图片,如果有缓存而且没有过期( ...

  3. Java有关List的stream基本操作

    参考博客: https://www.jianshu.com/p/9fe8632d0bc2 Stream简介 Java 8引入了全新的Stream API.这里的Stream和I/O流不同,它更像具有I ...

  4. 【Oracle】曾经的Oracle学习笔记(1-3) 数据库常见用语,常见命令,创建测试表

    一.数据库的登录 二.数据库常用语 三.测试表的创建,测试数据初始化 四.常见命令介绍 五.测试 user:jeffreysn:jeffrey user:systemsn:jeffrey 浏览器中输入 ...

  5. PRD、MRD、BRD的含义

    一.PRD的含义 英文简称,PRD(Product Requirement Document),PRD文档中文意思是:产品需求文档. PRD文档是产品项目由“概念化”阶段进入到“图纸化”阶段的最主要的 ...

  6. 本人常用的Phpstorm快捷键

    我设置的是eclipse的按键风格(按键习惯),不是phpstorm的风格 1.添加TODO(这个不是快捷键)://TODO 后面是说明,换行写实现代码 2.选择相同单词做一次性修改:Alt+J+鼠标 ...

  7. 平时对Vue的总结

    1.v-bind和v-on的区别 v-bind绑定的函数是立即执行的 v-on是需要一定触发执行的 2.computed和methods的区别 computed的函数是设置属性的 methods的函数 ...

  8. linux 命令——11 nl (转)

    nl命令在linux系统中用来计算文件中行号.nl 可以将输出的文件内容自动的加上行号!其默认的结果与 cat -n 有点不太一样, nl 可以将行号做比较多的显示设计,包括位数与是否自动补齐 0 等 ...

  9. 富文本编辑器Ueditor的使用

    1.下载:http://ueditor.baidu.com/website/download.html. 2.解压,并放到项目webapp下. 3.jsp页面的配置. 4.配置根路径. 5.页面展示: ...

  10. 毛毛虫组【Beta】Scrum Meeting 2

    第二天 日期:2019/6/24 前言 第二次会议: 时间:6月24日 地点:教10-503 内容:此次会议主要是进一步完善系统,分配进行文档的准备工作. 1.1 今日完成任务情况以及遇到的问题. 今 ...