题目描述

一个等差数列是一个能表示成a, a+b, a+2b,..., a+nb (n=0,1,2,3,...)的数列。

在这个问题中a是一个非负的整数,b是正整数。写一个程序来找出在双平方数集合(双平方数集合是所有能表示成p的平方 + q的平方的数的集合,其中p和q为非负整数)S中长度为n的等差数列。

输入输出格式

输入格式:

第一行: N(3<= N<=25),要找的等差数列的长度。

第二行: M(1<= M<=250),搜索双平方数的上界0 <= p,q <= M。

输出格式:

如果没有找到数列,输出`NONE'。

如果找到了,输出一行或多行, 每行由二个整数组成:a,b。

这些行应该先按b排序再按a排序。

所求的等差数列将不会多于10,000个。

输入输出样例

输入样例#1:

5
7
输出样例#1:

1 4
37 4
2 8
29 8
1 12
5 12
13 12
17 12
5 20
2 24

说明

题目翻译来自NOCOW。

USACO Training Section 1.4

枚举差值,注意优化

#include<cstdio>
#include<algorithm>
using namespace std;
int n,m;
bool can[];
int f[];
int cnt=;
struct node{
int a,b;
}ans[];
bool cmp(node a,node b)
{
if(a.b>b.b)return ;
if(a.a>b.a)return ;
return ;
}
int main()
{
int num=;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
for(int j=i;j<=m;j++)
{
if(!can[i*i+j*j])
{
can[i*i+j*j]=;
f[++num]=i*i+j*j;
}
}
}
sort(f+,f+num+);
for(int i=;i<=num-n+;i++)
{
int a=f[i],j=i;
bool flag=;
while()
{ j++;
int tmp=f[j]-f[i];
if(j>num-n+) break;
if(a+tmp*(n-)>f[num])break;
for(int q=;q<n;q++)
{
if(!can[a+q*tmp])
{
flag=;break;
}
}
if(flag)break;
ans[++cnt].a=a;
ans[cnt].b= tmp;
}
}
sort(ans+,ans+cnt+,cmp);
if(!cnt)
printf("NONE");
else for(int i=;i<=cnt;i++)
{
printf("%d %d\n",ans[i].a,ans[i].b);
}
return ;
}

luogu P1214 [USACO1.4]等差数列 Arithmetic Progressions的更多相关文章

  1. 洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions

    P1214 [USACO1.4]等差数列 Arithmetic Progressions• o 156通过o 463提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题 ...

  2. [USACO1.4]等差数列 Arithmetic Progressions

    题目描述 一个等差数列是一个能表示成a, a+b, a+2b,..., a+nb (n=0,1,2,3,...)的数列. 在这个问题中a是一个非负的整数,b是正整数.写一个程序来找出在双平方数集合(双 ...

  3. 等差数列Arithmetic Progressions题解(USACO1.4)

    Arithmetic Progressions USACO1.4 An arithmetic progression is a sequence of the form a, a+b, a+2b, . ...

  4. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  5. USACO 1.4 Arithmetic Progressions

    Arithmetic Progressions An arithmetic progression is a sequence of the form a, a+b, a+2b, ..., a+nb ...

  6. [Educational Codeforces Round 16]D. Two Arithmetic Progressions

    [Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...

  7. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  8. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  9. (素数求解)I - Dirichlet&#39;s Theorem on Arithmetic Progressions(1.5.5)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...

随机推荐

  1. 2 Model层 -定义模型

    1  ORM简介 MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库 ORM是“对象-关系-映射” ...

  2. “帮你APP”团队冲刺5

    1.整个项目预期的任务量 (任务量 = 所有工作的预期时间)和 目前已经花的时间 (所有记录的 ‘已经花费的时间’),还剩余的时间(所有工作的 ‘剩余时间’) : 所有工作的预期时间:88h 目前已经 ...

  3. mysql基础查询

    #进阶1:基础查询/*语法:select:查询列表 from 表名; 类似于:System.out.println(打印的东西); 特点:1.查询列表可以是:表中的字段.常量值.表达式.函数2.查询的 ...

  4. 一篇文章看懂Facebook和新浪微博的智能FEED

    本文来自网易云社区 作者:孙镍波 众所周知,新浪微博的首页动态流不像微信朋友圈是按照时间顺序排列的,而是按照一种所谓的"智能排序"的方式.这种违背了用户习惯的排序方式一直被用户骂, ...

  5. 使用 SceneLoader 类在 XNA 中显示载入屏幕(十)

    平方已经开发了一些 Windows Phone 上的一些游戏,算不上什么技术大牛.在这里分享一下经验,仅为了和各位朋友交流经验.平方会逐步将自己编写的类上传到托管项目中,没有什么好名字,就叫 WPXN ...

  6. 理解机器为什么可以学习(一)---Feasibility of learning

    主要讲解内容来自机器学习基石课程.主要就是基于Hoeffding不等式来从理论上描述使用训练误差Ein代替期望误差Eout的合理性. PAC : probably approximately corr ...

  7. [oldboy-django][2深入django]mysql查询语句--原生sql

    # 增(一共有三种方式) # 插入单条记录 insert into t1(name,...) values('lzp',..); 注意一点:t1(name,...)必须包含所有非空列(除去自增列) # ...

  8. tomcat 服务不支持 chkconfig 以及其他服务不能添加到开机启动时的操作

    在安装完tomcat后想添加的开机自启动的操作,但是报错tomcat 服务不支持 chkconfig,后来在  /etc/init.d/tomcat中的#!/bin/bash后添加上#chkconfi ...

  9. jquery版tab切换效果

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  10. WINDOWS开发PHP7扩展

    最近在做个项目,需要用到唯一ID的生成,原本在Java和Delphi中,做了一个生成20位字符串(160bit)形式的唯一ID的算法,但是对比GUID(128bit),除了看起来比他短之外,其他并无优 ...