这里以3次方来举例讲一下这题的做法,其它维类似。

如果要求某一个值的3次方那么sum = t^3,设t = x+y。那也就是sum = (x+y)^3.

假如我让每个数都加z t = x+y+z,我可以让新的y = y+z,这里发现新来的总会加在y上,那么可以给他一个延迟,slz,

那么新的值t = t + slz,再看如果让每个数都乘k,t = (x+y)*k = xk+yk.可以看出刚才的slz = slz*k; 另外发现系数会跟着变换,可以给他一个延迟,mlz。

那么一个数t = (mlz*x+slz)^3 = mlz^3*x^3+2*mlz^2*slz*x^2+2*mlz*slz^2*x+x^3.

如果求一段这样的和的话,会发现整体就是k1*原本x^3的和+k2*原本x^2的和+k1原本x^1的和 +(r-l+1)*x^3;

这样就可以分别保存3维的和。

把某一段的值设置为v的时候,可以使mlz =0 slz = v.

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 100000
#define LL __int64
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
const int mod = ;
int slz[N<<],mlz[N<<];//lz[N<<2];
LL s[N<<][];
int p[][];
void init()
{
int i,j;
for(i = ; i <= ; i++)
{
p[i][] = i;
for(j = ; j <= ; j++)
p[i][j] = (p[i][j-]*i)%mod;
}
}
void up(int w)
{
for(int i = ; i <= ; i++)
s[w][i] = (s[w<<][i]+s[w<<|][i])%mod;
}
void build(int l,int r,int w)
{
mlz[w] = ;
slz[w] = ;
//lz[w] = 0;
if(l==r)
{
for(int i = ; i <= ; i++)
s[w][i] = ;
return ;
}
int m = (l+r)>>;
build(l,m,w<<);
build(m+,r,w<<|);
up(w);
}
void down(int w,int m)
{ if(mlz[w]!=||slz[w]!=)
{
mlz[w<<] = (mlz[w<<]*mlz[w])%mod;
slz[w<<] = (mlz[w]*slz[w<<]+slz[w])%mod;
mlz[w<<|] = (mlz[w<<|]*mlz[w])%mod;
slz[w<<|] = (mlz[w]*slz[w<<|]+slz[w])%mod; int x1 ,x2,x3,y1,y2,y3;
x1 = mlz[w]; y1 = slz[w];
x2 = p[x1][]; y2 = p[y1][];
x3 = p[x1][]; y3 = p[y1][];
s[w<<][] = (x3*s[w<<][]+(*x2*y1)%mod*s[w<<][]+(*x1*y2)%mod*s[w<<][]+y3*(m-m/))%mod;
s[w<<|][] = (x3*s[w<<|][]+(*x2*y1)%mod*s[w<<|][]+(*x1*y2)%mod*s[w<<|][]+y3*(m/))%mod;
s[w<<][] = (x2*s[w<<][]+(*x1*y1)%mod*s[w<<][]+y2*(m-m/))%mod;
s[w<<|][] = (x2*s[w<<|][]+(*x1*y1)%mod*s[w<<|][]+y2*(m/))%mod;
s[w<<][] = (x1*s[w<<][]+y1*(m-m/))%mod;
s[w<<|][] = (x1*s[w<<|][]+y1*(m/))%mod;
mlz[w] = ;
slz[w] = ;
}
}
void update(int f,int c,int a,int b,int l,int r,int w)
{
if(a<=l&&b>=r)
{
if(f==)
{ mlz[w] = ;
slz[w] = c;
for(int i = ; i <= ; i++)
s[w][i] = (p[c][i]*(r-l+))%mod; }
else if(f==)
{ slz[w]=(slz[w]+c)%mod;
s[w][] = ((s[w][]+*s[w][]*c+*s[w][]*c*c)%mod+(LL)c*c*c*(r-l+))%mod;
s[w][] = ((s[w][]+*c*s[w][])%mod+(LL)c*c*(r-l+))%mod;
s[w][] = s[w][]+c*(r-l+); s[w][]%=mod;
}
else if(f==)
{ mlz[w] *= c;mlz[w]%=mod;
slz[w] *= c;slz[w]%=mod;
// }
//cout<<l<<" "<<r<<" "<<s[w][2]<<endl;
s[w][] = (s[w][]*c*c*c)%mod;
s[w][] = (s[w][]*c*c)%mod;
s[w][] = (c*s[w][])%mod;
//cout<<l<<" "<<r<<" "<<s[w][2]<<endl;
}
return ;
}
down(w,r-l+);
int m = (l+r)>>;
if(a<=m)
update(f,c,a,b,l,m,w<<);
if(b>m) update(f,c,a,b,m+,r,w<<|);
up(w);
}
LL query(int f,int a,int b,int l,int r,int w)
{
if(a<=l&&b>=r)
{
return s[w][f];
}
down(w,r-l+);
int m = (l+r)>>;
LL res=;
if(a<=m) res+=query(f,a,b,l,m,w<<);
res%=mod;
if(b>m) res+=query(f,a,b,m+,r,w<<|);
res%=mod;
return res;
}
int main()
{
int n,m,i;
int k,x,y,c;
init();
while(scanf("%d%d",&n,&m)&&n&&m)
{
build(,n,);
for(i = ;i <= m; i++)
{
scanf("%d%d%d%d",&k,&x,&y,&c);
if(k<=)
update(k,c,x,y,,n,);
else
printf("%I64d\n",(query(c,x,y,,n,))%mod);
}
}
return ;
}

hdu4578Transformation(线段树多个lz标记)的更多相关文章

  1. 【HDU 4614】Vases and Flowers(线段树区间更新懒惰标记)

    题目0到n-1的花瓶,操作1在下标a开始插b朵花,输出始末下标.操作2清空[a,b]的花瓶,求清除的花的数量.线段树懒惰标记来更新区间.操作1,先查询0到a-1有num个空瓶子,然后用线段树的性质,或 ...

  2. 【BZOJ-4636】蒟蒻的数列 动态开点线段树 ||(离散化) + 标记永久化

    4636: 蒟蒻的数列 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 247  Solved: 113[Submit][Status][Discuss ...

  3. [HDOJ4578]Transformation(线段树,多延迟标记)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 四种操作:查询.加法.乘法.改数.应该是需要维护三个lazy标记,然后就是套路了.查询是区间内所 ...

  4. 扶桑号战列舰 (单调栈+线段树区间更新懒惰标记 or 栈)

    传送门 •题目描述 题目描述 众所周知,一战过后,在世界列强建造超无畏级战列舰的竞争之中,旧日本海军根据“个舰优越主义”,建造了扶桑级战列舰,完工时为当时世界上武装最为强大的舰只. 同时,扶桑号战列舰 ...

  5. 杭电 HDU ACM 1698 Just a Hook(线段树 区间更新 延迟标记)

    欢迎"热爱编程"的高考少年--报考杭州电子科技大学计算机学院 Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memor ...

  6. HDU 3911 Black And White (线段树区间合并 + lazy标记)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3911 给你n个数0和1,m个操作: 0操作  输出l到r之间最长的连续1的个数 1操作  将l到r之间 ...

  7. FZU-1608 Huge Mission 线段树(更新懒惰标记)

    题目链接: https://cn.vjudge.net/problem/FZU-1608 题目大意: 长度n,m次操作:每次操作都有三个数:a,b,c:意味着(a,b]区间单位长度的价值为c,若某段长 ...

  8. HDU 4553 约会安排(线段树区间合并+双重标记)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4553 题目大意:就是有三种操作: ①DS x,安排一段长度为x的空闲时间跟屌丝一起,输出这段时间的起点 ...

  9. hdu1698 Just a Hook (线段树区间更新 懒惰标记)

    Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

随机推荐

  1. ubuntu 16.04 安装 Matlab R2016b后启动出现的问题

    (1)报以下错误: License checkout failed.License Manager Error -95MATLAB is unable to connect to the licens ...

  2. JNI——JAVA调用C

    1. 编译java:javac JNIDemo.java 2. 编译JNI:gcc -I/usr/lib/jvm/java-1.8.0-openjdk-amd64/include/ -I/usr/li ...

  3. MTK DDR调试

    1. 获取 flash id: 硬件信息:通过这个节点可以知道当前flash的id,上层根据id找到对应的flash名字. cat /sys/block/mmcblk0/device/cid \ker ...

  4. ceph部署与问题

    一.基本情况:物理设备:4台惠普dl360,4个千兆网卡 4个1T盘操作系统统一为:CentOS 7.2.1511ceph版本:10.2.3ceph-deploy版本:1.5.36网络情况:192.1 ...

  5. QC使用常见问题

    1.如果出现/qcbin/setup_a.cab this file didn’t pass singnature checking. 请下载capicom.dll文件拷贝到c:windowssyst ...

  6. 【Data Structure & Algorithm】字符串全排列

    字符串全排列 题目:输入一个字符串,打印出该字符串的所有排列.例如输入字符串abc,则输出由字符a.b.c所能排列出来的所有字符串abc.acb.bac.bca.cab.cba. 分析:考察对递归的理 ...

  7. TypeScript完全解读(26课时)_1.TypeScript完全解读-开发环境搭建

    1.TypeScript完全解读-开发环境搭建 初始化项目 手动创建文件夹 D:\MyDemos\tsDemo\client-demo 用VSCode打开 npm init:初始化项目 然后我们的项目 ...

  8. u3d shader学习笔记1

    促使我学习SHADER的重要原因是希望深入理解3D渲染的机制,在此基础上可以灵活达到某种效果与性能的平衡,开发出具有良好体验的VR应用. 因为VR应用体验的好坏,直接由游戏的帧率决定,而游戏的帧率则受 ...

  9. HDU - 4535 ZZULI 1867: 礼上往来【错位排序】

    1867: 礼上往来 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 216  Solved: 65 SubmitStatusWeb Board Desc ...

  10. IOS按需返回刷新数据

    问题描述 相信大家都会遇到过这种情况: 进入下一页面,并且在下一页面执行某一动作,返回要刷新,没有执行某一动作,返回不刷新.也就是当前页面要实现按照需求刷新页面 实现思路 在当前页面定义个Bool类型 ...