1. 介绍

Apache Hudi是一个开源的数据湖框架,旨在简化增量数据处理和数据管道开发。借助Hudi可以在Amazon S3、Aliyun OSS数据湖中进行记录级别管理插入/更新/删除。AWS EMR集群已支持Hudi组件,并且可以与AWS Glue Data Catalog无缝集成。此特性可使得直接在Athena或Redshift Spectrum查询Hudi数据集。

对于企业使用AWS云的一种常见数据流如图1所示,即将数据实时复制到S3。

本篇文章将介绍如何使用Oracle GoldenGate来捕获变更事件并利用Hudi格式写入S3数据湖。

Oracle GG可以使用多个处理程序和格式输出,请查看此处获取更多信息。

本篇文章中不关心处理程序,我们假设使用Avro Operation格式,这种格式较为冗长,但有着广泛应用,因为其平衡了数据完整性和性能。如图2所示,此格式包含每个记录的beforeafter版本。

即使完整且易于生成,此格式也不适合用Athena或Spectrum进行分析,从使用角度也无法替代源数据。此外你可能需要对历史数据进行分区处理以便快速检索。

本文我们将介绍如何利用Apache Hudi框架做到这一点,以构建易于分析的目标数据集。

2. 系统架构

我们不详细介绍如何将avro格式文件放入Replica S3桶中,整个数据体系结构如下所示

Hudi代码运行在EMR集群中,从Replica S3桶中读取avro数据,并将目标数据集存储到Target S3桶中。

EMR软件配置如下

硬件配置如下

由于插入/更新始终保留最后一条记录,因此Hudi作业非常具有弹性, 因此可以利用Spot Instance(抢占式实例)大大降低成本。

除此之外,还需要设置

  • 源bucket(如 my-s3-sourceBucket)
  • 目标bucket (如 my-s4-targetBucket)
  • Glue数据库(如 sales-db)

配置完后需要确保EMR集群有读写权限。

如果你需要一些样例数据,可以点击此处获取。当设置好桶后,启动EMR集群并将这些样例数据导入Replica桶。

3. 关于分区的注意事项

为构建按时间划分的数据集,必须确定不可变的日期类型字段。参照示例数据集(销售订单),我们假设订单日期永远不会改变,因此我们将DAT_ORDER字段作为写入Hudi数据集的分区字段。

分区方式是YYYY/MM/DD,通过该方式,所有数据将被组织在嵌套的子文件夹中。Hudi框架将提供此分区信息,并将一个特定字段添加到关联的Hive/Glue表中。当查询时,该字段上的过滤条件将转换为超高效的分区修剪扫描条件。

实际上这是我们必须对数据集做的唯一强假设,所有其他信息都在avro文件中(字段名称,字段类型,PK等)。

除此元数据外,GoldenGate通常还会添加一些其他信息,例如表名称,操作时间戳,操作类型(插入/更新/删除)和自定义标记。你可以利用这些字段来构造通用逻辑并构建灵活的迁移平台。

4. 步骤

启动spark-shell

spark-shell --conf "spark.serializer=org.apache.spark.serializer.KryoSerializer" --conf "spark.sql.hive.convertMetastoreParquet=false" --jars /usr/lib/hudi/hudi-spark-bundle.jar,/usr/lib/spark/external/lib/spark-avro.jar

启动后可以运行如下代码:

val ggDeltaFiles = "s3://" + sourceBucket + "/" + sourceSubFolder + "/" + sourceSystem + "/" + inputTableName + "/";
val rootDataframe:DataFrame = spark.read.format("avro").load(ggDeltaFiles); // extract PK fields name from first line
val pkFields: Seq[String] = rootDataframe.select("primary_keys").limit(1).collect()(0).getSeq(0); // take into account the "after." fields only
val columnsPre:Array[String] = rootDataframe.select("after.*").columns; // exclude "_isMissing" fields added by Oracle GoldenGate
// The second part of the expression will safely preserve all native "**_isMissing" fields
val columnsPost:Array[String] = columnsPre.filter { x => (!x.endsWith("_isMissing")) || (!x.endsWith("_isMissing_isMissing") && (columnsPre.filter(y => (y.equals(x + "_isMissing")) ).nonEmpty))};
val columnsFinal:ArrayBuffer[String] = new ArrayBuffer[String](); columnsFinal += "op_ts";
columnsFinal += "pos"; // add the "after." prefix
columnsPost.foreach(x => (columnsFinal += "after." + x)); // prepare the target dataframe with the partition additional column
val preparedDataframe = rootDataframe.select("opTypeFieldName", columnsFinal.toArray:_*).
withColumn("HUDI_PART_DATE", date_format(to_date(col("DAT_ORDER"), "yyyy-MM-dd"),"yyyy/MM/dd")).
filter(col(opTypeFieldName).isin(admittedValues.toList: _*)); // write data
preparedDataframe.write.format("org.apache.hudi").
options(hudiOptions).
option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, pkFields.mkString(",")).
mode(SaveMode.Append).
save(hudiTablePath);

上述简化了部分代码,可以在此处找到完整的代码。

5. 结果

输出的S3对象结果如下所示

同时Glue数据目录将使该表可用于通过外部模式在Athena或Spectrum中进行查询分析,外部表具有我们用于分区的hudi_part_date附加字段。

Apache Hudi:CDC的黄金搭档的更多相关文章

  1. 基于Apache Hudi 的CDC数据入湖

    作者:李少锋 文章目录: 一.CDC背景介绍 二.CDC数据入湖 三.Hudi核心设计 四.Hudi未来规划 1. CDC背景介绍 首先我们介绍什么是CDC?CDC的全称是Change data Ca ...

  2. 基于Apache Hudi和Debezium构建CDC入湖管道

    从 Hudi v0.10.0 开始,我们很高兴地宣布推出适用于 Deltastreamer 的 Debezium 源,它提供从 Postgres 和 MySQL 数据库到数据湖的变更捕获数据 (CDC ...

  3. 使用Amazon EMR和Apache Hudi在S3上插入,更新,删除数据

    将数据存储在Amazon S3中可带来很多好处,包括规模.可靠性.成本效率等方面.最重要的是,你可以利用Amazon EMR中的Apache Spark,Hive和Presto之类的开源工具来处理和分 ...

  4. 直播 | Apache Kylin & Apache Hudi Meetup

    千呼万唤始出来,Meetup 直播终于来啦- 本次线上 Meetup 由 Apache Kylin 与 Apache Hudi 社区联合举办,将于 3 月 14 日晚进行直播,邀请到来自丁香园.腾讯. ...

  5. 官宣!ASF官方正式宣布Apache Hudi成为顶级项目

    马萨诸塞州韦克菲尔德(Wakefield,MA)- 2020年6月 - Apache软件基金会(ASF).350多个开源项目和全职开发人员.管理人员和孵化器宣布:Apache Hudi正式成为Apac ...

  6. 使用Apache Hudi构建大规模、事务性数据湖

    一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主 ...

  7. 官宣!AWS Athena正式可查询Apache Hudi数据集

    1. 引入 Apache Hudi是一个开源的增量数据处理框架,提供了行级insert.update.upsert.delete的细粒度处理能力(Upsert表示如果数据集中存在记录就更新:否则插入) ...

  8. Apache Hudi和Presto的前世今生

    一篇由Apache Hudi PMC Bhavani Sudha Saktheeswaran和AWS Presto团队工程师Brandon Scheller分享Apache Hudi和Presto集成 ...

  9. Apache Hudi助力nClouds加速数据交付

    1. 概述 在nClouds上,当客户的业务决策取决于对近实时数据的访问时,客户通常会向我们寻求有关数据和分析平台的解决方案.但随着每天创建和收集的数据量都在增加,这使得使用传统技术进行数据分析成为一 ...

随机推荐

  1. how to share UI components

    how to share UI components The shared component cloud · Bit https://bit.dev/ A better way to build w ...

  2. 口罩 & 防毒面具 N95 & P100

    口罩 & 防毒面具 N95 & P100 N95 口罩 < 防毒面具 P100 https://www.techritual.com/2020/01/30/210599/

  3. Android Studio 3.3.1 向avd模拟器发送本地文件

    "工具栏/View/Tool Windows/Device File Pxplorer" 选择模拟器在找到对应的文件夹upload即可

  4. 用Vue3构建企业级前端应用,TS能让你更轻松点

    摘要:Vue 3已经发布有一段时间了,到底有哪些新特性值得关注,如何用它构建企业级前端项目,怎样快速上手Vue 3?本篇文章将对此进行详细讲解. 前言 工欲善其事,必先利其器 --<论语> ...

  5. 第一篇文章 vim的使用

    这么长时间以来,一直没有在博客园上写过博文.那第一篇博文就以vim的使用为开端吧. 不知道有多少人还在用着ctrl+c,ctrl+v这种方式,不过,就我个人而言,还是很倾向于vim的.不管是在服务器上 ...

  6. Tango with django 1.9 中文——3.Django基础

    让我们开始运用Django.本章主要是给你一个关于创建新项目和新应用过程的概览.在本章的末尾,你将建立起一个简单的由Django驱动的网站. 3.1 配置测试 让我们测试以下你的Python和Djan ...

  7. 共享内存与存储映射(mmap)

    [前言]对这两个理解还是不够深刻,写一篇博客来记录一下. 首先关于共享内存的链接:共享内存.里面包含了创建共享内存区域的函数,以及两个进程怎么挂载共享内存通信,分离.释放共享内存. 共享内存的好处就是 ...

  8. 后端程序员之路 30、webapi测试工具的一点想法

    有了webapi,对应的,也就要有各种语言的sdk,有时候,还要有一个好用的api测试工具.sdk和api测试工具在功能上有一些异同,有时候测试工具会直接基于sdk来制作. 它们通常包含: 1.htt ...

  9. AI换脸

    AI换脸 技术 调用到百度的AI接口,layui的图片上传,栅格化布局 核心代码 纯py文件运行 # encoding:utf-8 import requests import base64 impo ...

  10. 设计模式之简单工厂模式(Simple Factory Pattern)

    一.简单工厂模式的由来 所有设计模式都是为解决某类问题而产生的,那么简单工厂模式是为解决什么问题呢?我们假设有以下业务场景: 在一个学生选课系统中,文科生用户选课时,我们要获得文科生的所有课程列表:理 ...