一、题面

  P2261 [CQOI2007]余数求和

二、分析

  参考文章:click here

  对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围。

  假设$ n = 10 ,k = 5 $  

$$   i : 1 \  2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10  \\  \lfloor \frac{k}{i} \rfloor :  5 \ 2 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0   $$

  我们推导出假设$ L = i $,那么,对应的 $ \lfloor \frac{k}{i} \rfloor $ 相等的最右边界为 $  R =  \lfloor \frac{k}{  \lfloor \frac{k}{i} \rfloor } \rfloor $.(具体证明可以看参考文章。)

  需要注意的细节是

  1 $R$可能超过$n$,所以要限制一下。

  2 一定要用$long long$。

三、AC代码

 1 #include <bits/stdc++.h>
2
3 using namespace std;
4 typedef long long ll;
5
6 int main()
7 {
8 //freopen("input.txt", "r", stdin);
9 ll n, k;
10 while(scanf("%lld%lld", &n, &k) != EOF)
11 {
12 ll ans = n * k;
13 ll L, R;
14 for(L = 1; L <= n; L = R + 1)
15 {
16 ll res = k/L;
17 if(res)
18 {
19 // 必须加min,因为k/res可能超过n,例如 k = 10, n = 6
20 R = min(k/res, n);
21 }
22 else
23 R = n;
24 ans -= res * (R - L + 1) * (R + L) / 2;
25 }
26 printf("%lld\n", ans);
27 }
28 return 0;
29 }

P2261 [CQOI2007]余数求和 【整除分块】的更多相关文章

  1. P2261 [CQOI2007]余数求和[整除分块]

    题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...

  2. 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块

    参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...

  3. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  4. [CQOI2007] 余数求和 - 整除分块

    \(\sum_{i=1}^n\;k\;mod\;i\) Solution \(\sum_{i=1}^n\;k\;mod\;i\\=\sum_{i=1}^n(k-i\lfloor{\frac{k}{i} ...

  5. LUOGU P2261 [CQOI2007]余数求和(数论分块)

    传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...

  6. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  7. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  8. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  9. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

随机推荐

  1. meidi

    最近觉得某些公司的选择题也是很基础,非常值得总结回味.今天做了美的的笔试,20道选择题(单选14+6多选).特此记录如下(部分忘了烦请见谅): 1. 是我昨晚刚刚总结的List,Set,Map的区别: ...

  2. PAT L2-020 功夫传人【BFS】

    一门武功能否传承久远并被发扬光大,是要看缘分的.一般来说,师傅传授给徒弟的武功总要打个折扣,于是越往后传,弟子们的功夫就越弱-- 直到某一支的某一代突然出现一个天分特别高的弟子(或者是吃到了灵丹.挖到 ...

  3. JPG学习笔记2(附完整代码)

    #topics h2 { background: rgba(43, 102, 149, 1); border-radius: 6px; box-shadow: 0 0 1px rgba(95, 90, ...

  4. LeetCode & tree & binary tree

    LeetCode & tree & binary tree 树 & 二叉树 refs https://leetcode.com/problemset/all/?topicSlu ...

  5. Interview of Chinese IT companies Ratings and Reviews website/app

    Interview of Chinese IT companies Ratings and Reviews website/app // js hack const getShitRank = (st ...

  6. DOM & Shadow DOM & Virtual DOM

    DOM & Shadow DOM & Virtual DOM What is the difference between Shadow DOM and Virtual DOM? ht ...

  7. uniapp设置不同的主题(Theme)

    App.vue: <style lang="stylus"> @css { html { --primary: blue; --bg-image: url(https: ...

  8. 心之所向·智慧绽放丨NGK区块链赋能实体经济论坛圆满落幕

    据外媒报导,近日,由NGK主办的"NGK区块链赋能实体经济论坛"于英国伦敦的威斯敏斯特中央大厅圆满落幕.大会现场到来了NGK北美市场领导人.区块链行业的专业人士.NGK英国社区代表 ...

  9. django学习-9.windows系统安装mysql8教程

    1.前言 mysql是最流行的关系型数据库管理系统之一,我们可以在本地windows环境下搭建一个mysql的环境,便于学习. 当前我采取的搭配是: windows7(window8和window10 ...

  10. C/C++子函数参数传递,堆栈帧、堆栈参数详解

    本文转载自C/C++子函数参数传递,堆栈帧.堆栈参数详解 导语 因为参数传递和汇编语言有很大联系,之后会出现较多x86汇编代码. 该文会先讲一下x86的堆栈参数传递过程,然后再分析C/C++子函数是怎 ...