Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:

0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner:

9 2 -4 1 -1 8 and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

Sample Output

15

题目大意

输入一个N(N最大100),然后输入N2 个数(每个数的取值范围为:[-127, 127] ),N * N的矩阵,找其中的子矩阵所有元素和最大的值

解题思路

每行的数等于当前行加上之前行的数,前缀和

$a[i][j] = a[i - 1][j] + 当前数$

假设一开始,数组存储状态如图所示:

每行数据的每一列 等于 当前列之前行的所有数之和(包括当前行)

从第x( 1 <= x <= n )行开始

到第y ( x <= y <= n )行结束。遍历找的最大子段和

num[y][k] - num[x - 1][k]就是第k列的第x行到第y行的所有数之和

其实就是把第x行到第y行每一列的数按列加起来,变成一维数组

然后找其最大子段和

下面是AC代码:

#include <cstdio>
#include <cstdlib>
#include <memory.h> #define N 105 int num[N][N]; int main()
{
int n;
while (~scanf("%d", &n))
{
memset(num, 0, sizeof(num));
int temp;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
scanf("%d", &temp);
num[i][j] = num[i - 1][j] + temp;
}
} int max = 0;
int sum; for (int i = 1; i <= n; i++)
{
for (int j = i; j <= n; j++)
{
sum = 0;
for (int k = 1; k <= n; k++)
{
temp = num[j][k] - num[i - 1][k];
sum = sum > 0 ? sum + temp : temp;
max = sum > max ? sum : max;
}
}
}
printf("%d\n", max);
}
return 0;
}

To the Max(动态规划)的更多相关文章

  1. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  2. [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  3. POJ 1050 To the Max -- 动态规划

    题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...

  4. 动态规划算法(java)

    一.动态规划算法 众所周知,递归算法时间复杂度很高为(2^n),而动态规划算法也能够解决此类问题,动态规划的算法的时间复杂度为(n^2).动态规划算法是以空间置换时间的解决方式,一开始理解起来可能比较 ...

  5. 连续子数组的最大和 java实现

    package findMax; /** * 连续子数组的最大和 * @author root * */ public class FindMax { static int[] data = {1,- ...

  6. 【动态规划】HDU 1081 & XMU 1031 To the Max

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1081 http://acm.xmu.edu.cn/JudgeOnline/problem.php?i ...

  7. HDOJ-1003 Max Sum(最大连续子段 动态规划)

    http://acm.hdu.edu.cn/showproblem.php?pid=1003 给出一个包含n个数字的序列{a1,a2,..,ai,..,an},-1000<=ai<=100 ...

  8. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

随机推荐

  1. gin+gorm 用户服务

    package main import ( "fmt" "github.com/gin-gonic/gin" "github.com/jinzhu/g ...

  2. faker切换user-agent

    import random import requests url = "http://tool.yeves.cn" import faker fake = faker.Faker ...

  3. JavaScript数字与字母相互转换

    数字 转换为 字母: const num = 'a'.charCodeAt() // num = 97 字母 转换为 数字: var str = String.fromCharCode(97) // ...

  4. C# 将Excel里面的数据填充到DataSet中

    /// <summary> /// 将Excel表里的数据填充到DataSet中 /// </summary> /// <param name="filenam ...

  5. Vue 过滤器入门

    Vue 允许自定义过滤器,可被用于一些常见的文本格式化 过滤器可以用在两个地方:双花括号插值和 v-bind 表达式 过滤器应该被添加在JavaScript表达式的尾部,由"管道" ...

  6. D. Design Tutorial: Inverse the Problem 解析含快速解法(MST、LCA、思維)

    Codeforce 472D Design Tutorial: Inverse the Problem 解析含快速解法(MST.LCA.思維) 今天我們來看看CF472D 題目連結 題目 給你一個\( ...

  7. Disruptor 使用简介

    [开发总结]Disruptor 使用简介 在极客时间看到王宝令老师关于 Disruptor 的一篇文章,觉得很有意思.看完之后又在网上找到一些其他关于Disruptor 的资料看了一下. 现在写篇文章 ...

  8. Pytest里面的测试用例怎么进行前置准备和后置清理操作?

    Pytest处理前置后置有两种方式可以处理. 第一种是通过setup和teardown这样的方法去处理: 第二种是通过fixture来实现的.首先先定义fixture,然后在调用.定义fixture, ...

  9. 购买GPRS DTU时应该怎么选择

    GPRS DTU如今是一种被广泛应用的物联网无线数据终端,主要是利用GPRS网络为用户提供无线长距离数据透传功能,在电力.环保.物流.气象等行业领域有着广泛应用.目前市场上的GPRS DTU产品眼花缭 ...

  10. insert into select 和select into from 备份表

    一 insert into select要求表必须存在 INSERTINTO order_record SELECT * FROM order_today FORCEINDEX (idx_pay_su ...