Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:

0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner:

9 2 -4 1 -1 8 and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

Sample Output

15

题目大意

输入一个N(N最大100),然后输入N2 个数(每个数的取值范围为:[-127, 127] ),N * N的矩阵,找其中的子矩阵所有元素和最大的值

解题思路

每行的数等于当前行加上之前行的数,前缀和

$a[i][j] = a[i - 1][j] + 当前数$

假设一开始,数组存储状态如图所示:

每行数据的每一列 等于 当前列之前行的所有数之和(包括当前行)

从第x( 1 <= x <= n )行开始

到第y ( x <= y <= n )行结束。遍历找的最大子段和

num[y][k] - num[x - 1][k]就是第k列的第x行到第y行的所有数之和

其实就是把第x行到第y行每一列的数按列加起来,变成一维数组

然后找其最大子段和

下面是AC代码:

#include <cstdio>
#include <cstdlib>
#include <memory.h> #define N 105 int num[N][N]; int main()
{
int n;
while (~scanf("%d", &n))
{
memset(num, 0, sizeof(num));
int temp;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
scanf("%d", &temp);
num[i][j] = num[i - 1][j] + temp;
}
} int max = 0;
int sum; for (int i = 1; i <= n; i++)
{
for (int j = i; j <= n; j++)
{
sum = 0;
for (int k = 1; k <= n; k++)
{
temp = num[j][k] - num[i - 1][k];
sum = sum > 0 ? sum + temp : temp;
max = sum > max ? sum : max;
}
}
}
printf("%d\n", max);
}
return 0;
}

To the Max(动态规划)的更多相关文章

  1. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  2. [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  3. POJ 1050 To the Max -- 动态规划

    题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...

  4. 动态规划算法(java)

    一.动态规划算法 众所周知,递归算法时间复杂度很高为(2^n),而动态规划算法也能够解决此类问题,动态规划的算法的时间复杂度为(n^2).动态规划算法是以空间置换时间的解决方式,一开始理解起来可能比较 ...

  5. 连续子数组的最大和 java实现

    package findMax; /** * 连续子数组的最大和 * @author root * */ public class FindMax { static int[] data = {1,- ...

  6. 【动态规划】HDU 1081 & XMU 1031 To the Max

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1081 http://acm.xmu.edu.cn/JudgeOnline/problem.php?i ...

  7. HDOJ-1003 Max Sum(最大连续子段 动态规划)

    http://acm.hdu.edu.cn/showproblem.php?pid=1003 给出一个包含n个数字的序列{a1,a2,..,ai,..,an},-1000<=ai<=100 ...

  8. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

随机推荐

  1. 使用C++标准库cout输出枚举类型

    由于枚举类型呢,是属于一种标签类型,所以在使用std::cout输出的时候,会导致无法匹配数据类型而导致cout函数失败. 这里给的建议呢就是在想要输出的时候,将枚举类型转换为数据类型就可以啦. 如: ...

  2. django—路由相关

    django不同版本的路由配置 django 2之前,配置urlpatterns使用的是url方法 django 2之后,配置urlpatterns使用的是path方法 path与url的区别: ur ...

  3. ubuntu 16.04 Chrome

    打开终端 输入 命令1:sudo wget http://www.linuxidc.com/files/repo/google-chrome.list -P /etc/apt/sources.list ...

  4. 「IDEA插件精选」安利一个IDEA骚操作:一键生成方法的序列图

    在平时的学习/工作中,我们会经常面临如下场景: 阅读别人的代码 阅读框架源码 阅读自己很久之前写的代码. 千万不要觉得工作就是单纯写代码,实际工作中,你会发现你的大部分时间实际都花在了阅读和理解已有代 ...

  5. 联赛模拟测试24 D. 你相信引力吗 单调栈

    题目描述 分析 因为跨过最大值的区间一定是合法的,所以我们人为地把最大值放在最左边 我们要统计的就是在最大值右边单调不降的序列,可以用单调栈维护 需要特殊处理相同的情况 代码 #include< ...

  6. vue 用别名取代路径引用

    在项目开发过程中有可能很多包是没有放在npm上的,许多包需要下载到本地引用,这样一来我们只能通过require的方式来引用文件,但是路径的名字就会很长 例如 import Select from '. ...

  7. 论文解读《Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernel》

    Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels: 一旦退化模型被定义,下一步就是使用公式表示能量函数(energy fun ...

  8. 一篇理解什么是CanSet, CanAddr?

    什么是可设置( CanSet ) 首先需要先明确下,可设置是针对 reflect.Value 的.普通的变量要转变成为 reflect.Value 需要先使用 reflect.ValueOf() 来进 ...

  9. WTM系列教学视频全免费

    WTM框架问世以来,受到越来越多开发者的喜爱,为了回报大家的厚爱,原本在CSDN上的教学视频已经全部免费,900多分钟的视频,而且还会继续更新. 为了方便大家观看,在B站上也同步更新,地址如下: CS ...

  10. java数据结构-11循环双端队列

    @SuppressWarnings("unchecked") public class CircleDeque<E> { private int front; priv ...