To the Max(动态规划)
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner:
9 2 -4 1 -1 8 and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
Sample Output
15
题目大意
输入一个N(N最大100),然后输入N2 个数(每个数的取值范围为:[-127, 127] ),N * N的矩阵,找其中的子矩阵所有元素的和最大的值
解题思路
每行的数等于当前行加上之前行的数,前缀和
$a[i][j] = a[i - 1][j] + 当前数$
假设一开始,数组存储状态如图所示:

每行数据的每一列 等于 当前列之前行的所有数之和(包括当前行)

从第x( 1 <= x <= n )行开始
到第y ( x <= y <= n )行结束。遍历找列的最大子段和
num[y][k] - num[x - 1][k]就是第k列的第x行到第y行的所有数之和
其实就是把第x行到第y行每一列的数按列加起来,变成一维数组
然后找其最大子段和
下面是AC代码:
#include <cstdio>
#include <cstdlib>
#include <memory.h>
#define N 105
int num[N][N];
int main()
{
int n;
while (~scanf("%d", &n))
{
memset(num, 0, sizeof(num));
int temp;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
scanf("%d", &temp);
num[i][j] = num[i - 1][j] + temp;
}
}
int max = 0;
int sum;
for (int i = 1; i <= n; i++)
{
for (int j = i; j <= n; j++)
{
sum = 0;
for (int k = 1; k <= n; k++)
{
temp = num[j][k] - num[i - 1][k];
sum = sum > 0 ? sum + temp : temp;
max = sum > max ? sum : max;
}
}
}
printf("%d\n", max);
}
return 0;
}
To the Max(动态规划)的更多相关文章
- HDU 1081 To The Max(动态规划)
题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
- POJ 1050 To the Max -- 动态规划
题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...
- 动态规划算法(java)
一.动态规划算法 众所周知,递归算法时间复杂度很高为(2^n),而动态规划算法也能够解决此类问题,动态规划的算法的时间复杂度为(n^2).动态规划算法是以空间置换时间的解决方式,一开始理解起来可能比较 ...
- 连续子数组的最大和 java实现
package findMax; /** * 连续子数组的最大和 * @author root * */ public class FindMax { static int[] data = {1,- ...
- 【动态规划】HDU 1081 & XMU 1031 To the Max
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1081 http://acm.xmu.edu.cn/JudgeOnline/problem.php?i ...
- HDOJ-1003 Max Sum(最大连续子段 动态规划)
http://acm.hdu.edu.cn/showproblem.php?pid=1003 给出一个包含n个数字的序列{a1,a2,..,ai,..,an},-1000<=ai<=100 ...
- HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1003 Max Sum【动态规划求最大子序列和详解 】
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
随机推荐
- gin+gorm 用户服务
package main import ( "fmt" "github.com/gin-gonic/gin" "github.com/jinzhu/g ...
- faker切换user-agent
import random import requests url = "http://tool.yeves.cn" import faker fake = faker.Faker ...
- JavaScript数字与字母相互转换
数字 转换为 字母: const num = 'a'.charCodeAt() // num = 97 字母 转换为 数字: var str = String.fromCharCode(97) // ...
- C# 将Excel里面的数据填充到DataSet中
/// <summary> /// 将Excel表里的数据填充到DataSet中 /// </summary> /// <param name="filenam ...
- Vue 过滤器入门
Vue 允许自定义过滤器,可被用于一些常见的文本格式化 过滤器可以用在两个地方:双花括号插值和 v-bind 表达式 过滤器应该被添加在JavaScript表达式的尾部,由"管道" ...
- D. Design Tutorial: Inverse the Problem 解析含快速解法(MST、LCA、思維)
Codeforce 472D Design Tutorial: Inverse the Problem 解析含快速解法(MST.LCA.思維) 今天我們來看看CF472D 題目連結 題目 給你一個\( ...
- Disruptor 使用简介
[开发总结]Disruptor 使用简介 在极客时间看到王宝令老师关于 Disruptor 的一篇文章,觉得很有意思.看完之后又在网上找到一些其他关于Disruptor 的资料看了一下. 现在写篇文章 ...
- Pytest里面的测试用例怎么进行前置准备和后置清理操作?
Pytest处理前置后置有两种方式可以处理. 第一种是通过setup和teardown这样的方法去处理: 第二种是通过fixture来实现的.首先先定义fixture,然后在调用.定义fixture, ...
- 购买GPRS DTU时应该怎么选择
GPRS DTU如今是一种被广泛应用的物联网无线数据终端,主要是利用GPRS网络为用户提供无线长距离数据透传功能,在电力.环保.物流.气象等行业领域有着广泛应用.目前市场上的GPRS DTU产品眼花缭 ...
- insert into select 和select into from 备份表
一 insert into select要求表必须存在 INSERTINTO order_record SELECT * FROM order_today FORCEINDEX (idx_pay_su ...