CF-1332 F. Independent Set
F. Independent Set
题意
一颗 n 个节点的树,求出每个\(edge-induced~subgraph\)的独立集个数之和。
\(edge-induced~subgraph\)含义是对于边集\(E,(E'\subset E)\),\(E\) 中的所有点都在该子图中。
注意到题目要求的结果中,E' 不能为空
分析
首先选出子图,问题转换成在森林中选出一些点,他们互相没有边,求这样的点集的个数。对于一棵树上的问题,可以用树形DP求出
设 \(d[x][0]\) 表示不选 x 的方案数,\(d[x][1]\) 表示选 x 的方案数
则
\(d[x][0] = \prod (d[y][1] + d[y][0])\\d[x][1] = \prod d[y][0]\)
但是此题中 x 和 y 不一定在一棵树中,所以还要考虑 \(x\rightarrow y\) 这条边的状态。
该边在subgraph 中,则 x 的状态与 y 的状态有关联
该边不在subgraph中,则 x 的状态与 y 的状态没有关联
考虑这两种状态,有转移方程:
\(d[x][0] = \prod 2 * (d[y][1] + d[y][0])\)
\(d[x][1] = \prod (d[y][0] + d[y][1] + d[y][0])\)
到这里似乎问题已经得到解决,但是要注意到,“单点” 这种情况是不允许出现的,因为题目中的子图是由边集构造的,所以要考虑去除掉这种情况。
设 \(f[x]\) 表示 x 与所有的子节点 y 所连的边都不在子图中的方案数
在用 \(f[y]\) 去更新 x 时,如果 \(x\rightarrow y\) 这条边不被选中,则 y 被选中的状态 \(d[y][1]\) 应该减去 \(f[y]\), 这代表着 y 不能作为单点被选中,所以有如下转移:
d[x][0]= \prod (d[y][1]+d[y][0]) + (d[y][1]-f[y]+d[y][0]) \\
d[x][1] = \prod (d[y][0]) + (d[y][1] - f[y] + d[y][0])\\
f[x] = \prod (d[y][1]-f[y]+d[y][0])
\end{cases}
\]
最终答案应该是 \(d[1][0]+d[1][1]-f[1]-1\), 最后减去 1 是减去了空子图的情况
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 300000 + 5;
const int mod = 998244353;
int head[N], ver[N<<1], nxt[N<<1], tot;
int n;
ll d[N][2], f[N];
void add(int x, int y){
ver[++tot] = y, nxt[tot] = head[x], head[x] = tot;
}
void dfs(int x, int fa){
d[x][0] = d[x][1] = f[x] = 1;
for(int i=head[x];i;i=nxt[i]){
int y = ver[i];
if(y == fa) continue;
dfs(y, x);
d[x][0] = d[x][0] * ((2 * d[y][0] + 2 * d[y][1] - f[y])%mod) % mod;
d[x][1] = d[x][1] * ((2 * d[y][0] + d[y][1] - f[y]) % mod) % mod;
f[x] = f[x] * ((d[y][0] + d[y][1] - f[y]) % mod) % mod;
}
dbg(x, d[x][0], d[x][1], f[x]);
}
int main(){
scanf("%d", &n);
for(int i=2;i<=n;i++){
int x, y;
scanf("%d%d", &x, &y);
add(x, y);
add(y, x);
}
dfs(1, 0);
cout << (d[1][0] + d[1][1] - f[1] - 1 + 2 * mod) % mod;
return 0;
}
这题代码很容易写,关键是要把DP转移搞清楚,CF的题目解释很清晰,而且样例还给解释,要是放在比赛上能遇到这样的Hint就谢天谢地了
CF-1332 F. Independent Set的更多相关文章
- CF R 630 div2 1332 F Independent Set
LINK:Independent Set 题目定义了 独立集和边诱导子图.然而和题目没有多少关系. 给出一棵树 求\(\sum_{E'\neq \varnothing,E'\subset E}w(G( ...
- CF 633 F. The Chocolate Spree 树形dp
题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<ve ...
- CF #271 F Ant colony 树
题目链接:http://codeforces.com/contest/474/problem/F 一个数组,每一次询问一个区间中有多少个数字可以整除其他所有区间内的数字. 能够整除其他所有数字的数一定 ...
- CF 494 F. Abbreviation(动态规划)
题目链接:[http://codeforces.com/contest/1003/problem/F] 题意:给出一个n字符串,这些字符串按顺序组成一个文本,字符串之间用空格隔开,文本的大小是字母+空 ...
- CF 1138 F. Cooperative Game
F. Cooperative Game 链接 题意: 有10个玩家,开始所有玩家在home处,每次可以让一些玩家沿着边前进一步,要求在3(t+c)步以内,到达终点. 分析: 很有意思的一道题.我们构造 ...
- CF 1041 F. Ray in the tube
F. Ray in the tube 链接 题意: 有两条平行于x轴的直线A,B,每条直线上的某些位置有传感器.你需要确定A,B轴上任意两个整点位置$x_a$,$x_b$,使得一条光线沿$x_a→x_ ...
- 【Cf #502 F】The Neutral Zone
本题把$log$化简之后求得就是每个质数$f$前的系数,求系数并不难,难点在于求出所有的质数. 由于空间限制相当苛刻,$3e8$的$bitset$的内存超限,我们考虑所有的除了$2$和$3$以外的质数 ...
- CF 868 F. Yet Another Minimization Problem
F. Yet Another Minimization Problem http://codeforces.com/contest/868/problem/F 题意: 给定一个长度为n的序列.你需要将 ...
- CF 1051 F. The Shortest Statement
F. The Shortest Statement http://codeforces.com/contest/1051/problem/F 题意: n个点,m条边的无向图,每次询问两点之间的最短路. ...
随机推荐
- 并发编程--锁--volatile
在讲volatile关键字之前我们先了解Java的内存模型,Java内存模型规定所有的变量都是存在主存当中,每个线程都有自己的工作内存.线程对变量的所有操作都必须在自己的工作内存中进行,而不能直接对主 ...
- vue的favicon.ico的不能修改替换问题解决。
vue的favicon.ico解决办法: 暴力替换图片: <link rel="icon" href="favicon.ico" type="i ...
- 新来的运维这样用HDFS,CIO都懵了···
摘要:本文主要研究了HDFS文件系统的读写流程以及基于MRS在windows客户端下读写HDFS文件的实现. HDFS(Hadoop分布式文件系统)是Apache Hadoop项目的一个子项目. HD ...
- Java微服务 vs Go微服务,究竟谁更强!?
前言 Java微服务能像Go微服务一样快吗? 这是我最近一直在思索地一个问题. 去年8月份的the Oracle Groundbreakers Tour 2020 LATAM大会上,Mark Nels ...
- 【Java基础】基本语法-变量与运算符
基本语法-变量与运算符 关键字和保留字 关键字定义:被 Java 语言赋予了特殊含义,用做专门用途的字符串(单词). 关键字特点:关键字中所有字母都为小写. 用于定义数据类型:class.interf ...
- 拍摄、剪辑vlog的思路
这篇文章是看了很多狂阿弥_ 的作品后 产生的一些小小总结.这些技法只是锦上添花,阿弥作品真正好的地方在于他细腻的情感,真实的对白,和打动人心的满分作文. 优秀的Vlog ,在于它和观众产生的情感共鸣. ...
- 聊聊 g0
很多时候,当我们跟着源码去理解某种事物时,基本上可以认为是以时间顺序展开,这是编年体的逻辑.还有另一种逻辑,纪传体,它以人物为中心编排史事,使得读者更聚焦于某个人物.以一种新的视角,把所有的事情串连起 ...
- 【Linux】centos 7中,开机不执行rc.lcoal中的命令
最近将一些需要开机启动的命令添加到了rc.local中 本想着开机就启动了,很省事 但是一次意外的重启,发现rc.local中的全部命令都没有执行 发现问题后,及时查找 参考:https://blog ...
- Android之Xposed
基础书籍推荐:1.疯狂JAVA讲义:2.疯狂安卓讲义: 逆向分析必须知道他的原理,不然只会用工具,那就直接GG. 谷歌的镜像网站:https://developers.google.com/andro ...
- Databricks 第7篇:管理Secret
有时,访问数据要求您通过JDBC对外部数据源进行身份验证,可以使用Azure Databricks Secret来存储凭据,并在notebook和job中引用它们,而不是直接在notebook中输入凭 ...