一文读懂GaussDB(for Mongo)的计算存储分离架构
摘要:IDC认为,目前阶段来看,企业亟待解决的是数字化能力提升,包括:与业务的深入结合能力;数据处理和挖掘能力;以及IT技术运营和管理能力。特别是数据处理和挖掘能力,因为数字化转型推进企业从以流程为核心向以数据为核心转型,对海量、异构、多类型的数据处理和挖掘能力是释放数据价值的前提,对数据全生命周期的管控治理是释放数据价值的保障。可以看出,数据库作为数据的承载,企业的要求不再只是简单的存储功能了。
GaussDB(for Mongo)是华为云自主研发兼容MongoDB4.0接口的文档数据库。基于共享存储的存算分离架构,对于传统MongoDB社区版有如下优势:
- 秒级添加Secondary节点(相比社区版Mongo小时级添加Secondary节点)
- 基于WAL复制, Secondary节点无写IO,从根本上解决社区版Seconary节点Oplog脱节问题
- Primary/Seconary无任何IO交互,Secondary节点个数理论无上限, 支持百万OPS的读事务能力
- LSMTree Compaction 计算/IO卸载到Compaction统一调度池,集中管理,不浪费用户读写IO
- 基于共享存储,Chunk分裂/迁移动作不引起真实IO,只更新路由元数据,秒级分裂/均衡
1.GaussDB(for Mongo)技术架构
1)容忍更多Shard宕机
与社区版MongoDB的`Share-Nothing`模式不同的是,GaussDB(for Mongo)采用`Share-Storage`架构,计算存储分离。集群模式下,N个Shard节点,可以容忍N-1个Shard宕机。

某个Shard节点宕机后,其负责的数据由于存在于共享的存储池中,因此不需要物理拷贝数据,只需要修改元数据路由信息,即可被其他分片节点接管。
2)更快的分裂与均衡能力
此外,由于Chunk数据在存储池中,Chunk的分裂与均衡不涉及到数据拷贝,可以做到分钟级分裂与扩容,分裂与扩容对用户的影响也远比社区版MongoDB小。

3)百万级读OPS能力
GaussDB(for Mongo)副本集模式下,Primary/Secondary节点之间共享同一份数据库文件。Secondary节点只复制Primary节点的WriteAheadLog以及LSMTree的结构变更信息,并应用到内存中。Secondary节点没有LSMTree的Compaction和Flush任务,因此对用户的读业务影响很小。

此外,由于`Share-Storage`的架构优势,添加Secondary节点并不需要拷贝数据,添加Secondary节点的动作可以秒级完成。而Primary/Secondary之间只传递元数据变更,不传递WriteAheadLog,因此Secondary节点的个数即使变多,也不影响Primary节点的写性能。Secondary节点可以水平扩展,支撑百万级的读OPS。
4)主节点IO卸载
LSMTree的写压力来源于三部分:
- 用户的业务写入导致的Memtable Flush
- 后台SST文件Compaction
- WAL的持续写入
根据线上业务的实际测算,三者的IO资源消耗占比为: 1:10:1。后台的SST文件Compaction占了绝大部分IO带宽,通过将Compaction任务集中化管理,从计算池卸载到存储池,进一步减少了用户计算节点的CPU和IO资源消耗。

5)GaussDB(for Mongo) 只读节点设计
- 传统社区版MongoDB副本集基于Oplog做数据复制,只读节点需要镜像主节点的所有写IO操作。GaussDB(for Mongo) 的只读节点和主节点共享同一份底层数据库文件(LSMTree的SST文件),只读节点并不自己生成SST文件。
- 随着业务数据的写入,Compaction的不断执行,LSMTree的当前版本(包含哪些SST文件)不断更新,LSMTree的元数据更新(增删SST文件的记录)被同步到只读节点执行。
- RocksDB中,数据的变更被持久化到WAL里,元数据的变更(增删文件的操作, 叫做VersionEdit)被持久化到Mainifest里。RocksDB的数据和元数据是分开的,WAL流和VersionEdit流是并行的,没有严格的先后顺序。为了保证只读节点和主节点完全一致的事件回放顺序,WAL和VersionEdit流必须要合并成一个流,在双流合并后,通过LSN就可以为每个事件(WAL的写操作/VersionEdit)定序。

- 基于WAL+VersionEdit复制,而不基于Oplog复制
- 共享文件(sst/wal)的生命周期管理由主节点负责sst文件和wal的文件的生命周期由主节点负责。RocksDB中,SST文件通过层级的引用计数来维持不被删除。如下图,RocksDB的每个游标会维持SuperVersion,如下图中的S0,S1,S2。每个SuperVersion会引用一个Version,一个Version代表LSMTree在不断变形(通过增删SST文件变形)的过程中,某个时间点的形状,最新的Version就代表LSMTree当前的形状。

- 在GaussDB(for Mongo)中,主节点会记录所有只读节点在使用的Version,并为这些Version增加引用计数从而维持SST文件的生命周期。对于WAL,主节点会记录所有只读节点中最老的LSN(`oldestLsn`),最老的LSN来自于复制最慢的只读节点。并删除比oldestLsn还旧的WAL文件。
- 元数据变更通知,无论是oldestLsn还是只读节点的当前在用的活跃的Version,都需要及时推进,这些元数据的变更是通过主从节点的定期心跳上报到主节点上的。主节点利用心跳数据对垃圾版本与WAL做清理。如下图所示,在经历一次心跳后,主节点发现Secondary0的Version0和Secondary1的Version0不再使用。删除这两个Version后,SST0的引用计数为0,表示SST0可以被删除。OldestLsn也从100推进到了250,可以清理掉250之前的WAL。

- 只读节点的memtable的释放:主节点的Memtable不会实时Flush为SST文件。如果只读节点不处理主节点的Memtable的话,只读节点的数据就不是实时的,且存在数据一致性问题。只读节点通过回放WAL到内存的Memtable中,来覆盖SST文件与主节点的Memtable的Gap。上文介绍了只读节点是不往共享存储写入数据的, 所以只读节点上的 Memtable 最后的结局一定是被丢弃掉。但什么时候丢弃这个 Memtable 就是一个问题。过早的丢弃,会造成SST文件与Memtable之间的数据不连续,存在Gap,过晚的丢弃会造成内存的浪费。只有当只读节点识别到SST的数据已经完全能够Cover某个Memtable时,这个Memtable才可以被丢弃。
- GaussDB(for Mongo)的只读节点在每次应用VersionEdit后,检查所有SST中的最大的LSN与Memtable的最小的LSN的关系,来决定是否要丢弃某个Memtable。
- 内存元数据的反向更新:传统的复制,数据流从Oplog来,走一遍完整的数据库Server层CRUD接口,再落到引擎层。这种逻辑和主节点上业务的写入逻辑是一致的,因此Server层的一些内存元数据结构,在这个过程中就自然而然的得到更新了。但是当采用基于WAL的复制后,整个WritePath并不经过只读节点的Server层。因此Server层的内存元数据更新,就是一个很大的挑战。在这里,只读节点对每一条WAL做分析,如果WAL的内容会影响Mongo内存元数据,就会reload对应的元数据模块。

GaussDB(for Mongo) 基于Share-Storage架构,实现秒级Chunk分裂与均衡,对业务影响更小,水平扩展速度更快,能容忍更多节点宕机。只读节点功能,实现了一份数据多计算节点共用的功能。极大的提升了存储的利用效率,提高了计算节点的读取数据能力。为了让副本节点具有持续的读扩展能力,整个只读方案采用元数据的同步模式,在不降低主节点负载的情况下,极大的提升了整个系统的读数据的处理能力。为3节点,5节点,乃至于15节点以上的副本集的工作提供了可能。
数据显示,全球数据量将从2018年32.5ZB快速增长到2025年的180ZB。异构、智能和融合的数据库将成为金融、政府、电信等各行业数据基础设施的关键支柱。华为GaussDB(for Mongo),能消除企业各业务系统数据孤岛,构建面向行业场景的数据建模、分析和价值挖掘能力,最终帮助企业实现数据价值挖掘和共享。
一文读懂GaussDB(for Mongo)的计算存储分离架构的更多相关文章
- 一文读懂数仓中的pg_stat
摘要:GaussDB(DWS)在SQL执行过程中,会记录表增删改查相关的运行时统计信息,并在事务提交或回滚后记录到共享的内存中.这些信息可以通过 "pg_stat_all_tables视图& ...
- 一文读懂HTTP/2及HTTP/3特性
摘要: 学习 HTTP/2 与 HTTP/3. 前言 HTTP/2 相比于 HTTP/1,可以说是大幅度提高了网页的性能,只需要升级到该协议就可以减少很多之前需要做的性能优化工作,当然兼容问题以及如何 ...
- 一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现
一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现 导读:近日,马云.马化腾.李彦宏等互联网大佬纷纷亮相2018世界人工智能大会,并登台演讲.关于人工智能的现状与未来,他们提出了各自的观点,也引 ...
- 一文读懂高性能网络编程中的I/O模型
1.前言 随着互联网的发展,面对海量用户高并发业务,传统的阻塞式的服务端架构模式已经无能为力.本文(和下篇<高性能网络编程(六):一文读懂高性能网络编程中的线程模型>)旨在为大家提供有用的 ...
- 从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路
本文原作者阮一峰,作者博客:ruanyifeng.com. 1.引言 HTTP 协议是最重要的互联网基础协议之一,它从最初的仅为浏览网页的目的进化到现在,已经是短连接通信的事实工业标准,最新版本 HT ...
- 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25 16:29:19 对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...
- [转帖]MerkleDAG全面解析 一文读懂什么是默克尔有向无环图
MerkleDAG全面解析 一文读懂什么是默克尔有向无环图 2018-08-16 15:58区块链/技术 MerkleDAG作为IPFS的核心数据结构,它融合了Merkle Tree和DAG的优点,今 ...
- [转帖]一文读懂 HTTP/2
一文读懂 HTTP/2 http://support.upyun.com/hc/kb/article/1048799/ 又小拍 • 发表于:2017年05月18日 15:34:45 • 更新于:201 ...
- [转帖]从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路
从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路 http://www.52im.net/thread-1709-1-2.html 本文原作者阮一峰,作者博客:r ...
随机推荐
- Ethical Hacking - NETWORK PENETRATION TESTING(13)
Nmap Nmap is a network discovery tool that can be used to gather detailed information about any clie ...
- 集训 T3-难题
大致题意: 求方程 \(a_1+a_2+...+a_n=m\) 的非负整数解有几个. 基本思路: 深搜,虽然看起来可能会超时,但是对于100%的数据,0<=n,m<32767,结果< ...
- C++算法 广搜
有一个同学推荐我写一下广搜,广搜在最短路(骗分)上确实也有突出贡献,普及组应该也会考到,我今天就给要考普及组的同学讲讲课,今天讲广搜. 广搜,把可以走到的地点存进队列,然后一个个走,所以他第一次走到一 ...
- vue组件库用markdown生成文档
前言: 开发vue组件库需要提供组件的使用文档,最好是有渲染到浏览器的demo实例,既能操作又能查看源代码.markdown作为常用的文档编写载体,如果能在里面直接写vue组件,同时编写使用说明就再好 ...
- Dicom文件基本操作
官方文档 网址:https://github.com/fo-dicom/fo-dicom托管在github上. 官方例子 Dicom文件基本操作 var file = DicomFile.Open(@ ...
- vue中使用触摸事件,上滑,下滑,等
第一步,下载一个包 npm install kim-vue-touch -s 在当前项目中下载包 第二部 import vueTouch from 'kim-vue-touch' Vue.use(vu ...
- 在Dockerfile中使用和“Source”的Run指令不起作用?
报错误 /bin/sh: 1: source: not found sh不支持source bash支持source RUN rm /bin/sh && ln -s /bin/bash ...
- Spring学习之Spring与Mybatis的两种整合方式
本机使用IDEA 2020.1.MySql 8.0.19,通过Maven进行构建 环境准备 导入maven依赖包 <dependencies> <dependency> < ...
- Python os.rmdir() 方法
概述 os.rmdir() 方法用于删除指定路径的目录.仅当这文件夹是空的才可以, 否则, 抛出OSError.高佣联盟 www.cgewang.com 语法 rmdir()方法语法格式如下: os. ...
- 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造
一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...