LINK:牛牛的揠苗助长

题目很水 不过做法很多 想到一个近乎O(n)的做法 不过感觉假了 最后决定莽一个主席树 当然 平衡树也行。

容易想到 答案为ans天 那么一些点的有效增长项数为 ans%n.

那么其实可以直接枚举答案到底在哪个位置 那么问题转换成了 需要最少多少次 每次可以给每个数+1或者-1 使得整个序列数字相等。

容易想到最后答案中位数 即排序后a[n/2+1]。这样排个序数一下前后缀和即可。

不过 每次动态+1 求动态中位数这件事情 可以利用一个右指针扫描什么的 不过存在一些细节。

可以考虑 主席树做 注意求答案的时候要 考虑清楚 到底还需多少天。

当然 还可以二分。一开始虽然想到二分了 但是没有细想 以为不具有单调性。

容易发现 如果比答案要大 考虑先变成答案的样子 多出来的 天数 和 多出来的增长数可以抵消掉。

非常巧妙的是 具有单调性了。关于证明:比答案<n时 可以考虑 如果中位数没有变化那么显然可以,如果变化了设当前答案为ans1 如果按照之前的中位数来做设答案为ans2 显然存在ans1<=ans2 且如果按照之前的ans2来做可以 那么按照当前中位数来做也可以。

当比答案>n时 跟上面一样类似的证明。

我写的是主席树的做法。

const int MAXN=100010;
int n,maxx,root,id,sum;
int a[MAXN];ll ans=INF;
struct wy{int l,r,sum;ll cnt;}t[MAXN*30];
inline void insert(int &p,int l,int r,int x,int w)
{
if(!p)p=++id;
if(l==r){sum(p)+=w;if(w==1)cnt(p)+=x;else cnt(p)-=x;return;}
int mid=(l+r)>>1;
if(x<=mid)insert(l(p),l,mid,x,w);
else insert(r(p),mid+1,r,x,w);
sum(p)=sum(l(p))+sum(r(p));
cnt(p)=cnt(l(p))+cnt(r(p));
}
inline int ask(int p,int l,int r,int x)
{
if(l==r)return l;
int mid=(l+r)>>1;
if(sum(l(p))>=x)return ask(l(p),l,mid,x);
return ask(r(p),mid+1,r,x-sum(l(p)));
}
inline ll query(int p,int l,int r,int L,int R)
{
if(L>R)return 0;
if(L<=l&&R>=r){sum+=sum(p);return cnt(p);}
int mid=(l+r)>>1;ll ww=0;
if(L<=mid)ww+=query(l(p),l,mid,L,R);
if(R>mid)ww+=query(r(p),mid+1,r,L,R);
return ww;
}
int main()
{
//freopen("1.in","r",stdin);
get(n);int ww=n/2+1;
rep(1,n,i)get(a[i]),maxx=max(maxx,a[i]);
++maxx;
rep(1,n,i)insert(root,1,maxx,a[i],1);
rep(1,n,i)
{
insert(root,1,maxx,a[i],-1);
insert(root,1,maxx,a[i]+1,1);
sum=0;int cc=ask(root,1,maxx,ww);
ll kk=query(root,1,maxx,1,cc-1);
ll cnt=(ll)sum*cc-query(root,1,maxx,1,cc-1);
//putl((ll)sum*cc-query(root,1,maxx,1,cc-1));
//putl(cnt);put(sum);put(cc);putl(query(root,1,maxx,1,cc-1));
sum=0;kk=query(root,1,maxx,cc+1,maxx);cnt+=kk-(ll)sum*cc;
if(!cnt){ans=min(ans,(ll)i);continue;}
int now=cnt%n==0?n:cnt%n;
if(i>=now)ans=min(ans,cnt+i-now);
else ans=min(ans,n-now+i+cnt);
}
putl(ans);
return 0;
}

牛客练习赛63 C 牛牛的揠苗助长 主席树 二分 中位数的更多相关文章

  1. 牛客练习赛63 C.牛牛的揠苗助长

    题意:有一个长度为\(n\)的数组,从第一天开始,第\(i\)天可以使\(i\)位置上的数\(+1\),当\(i=n\)时,下次从\(i=1\)再开始,另外,在每天结束时,你可以使任意一个位置上的数\ ...

  2. 牛客网 牛客练习赛4 A.Laptop-二维偏序+离散化+树状数组

    A.Laptop 链接:https://ac.nowcoder.com/acm/contest/16/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K,其 ...

  3. 牛客练习赛47 E DongDong数颜色 (树状数组维护区间元素种类数)

    链接:https://ac.nowcoder.com/acm/contest/904/E 来源:牛客网 DongDong数颜色 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 5242 ...

  4. 牛客练习赛63 牛牛的树行棋 差分 树上博弈 sg函数

    LINK:牛牛的树行棋 本来是不打算写题解的. 不过具体思考 还是有一段时间的. 看完题 一直想转换到阶梯NIM的模型上 转换失败. 考虑SG函数. 容易发现 SG函数\(sg_x=max{sg_{t ...

  5. 牛客练习赛63 牛牛的斐波那契字符串 矩阵乘法 KMP

    LINK:牛牛的斐波那契字符串 虽然sb的事实没有改变 但是 也不会改变. 赛时 看了E和F题 都不咋会写 所以弃疗了. 中午又看了一遍F 发现很水 差分了一下就过了. 这是下午和古队长讨论+看题解的 ...

  6. 牛客练习赛53 (E 老瞎眼 pk 小鲜肉) 线段树+离线

    考试的时候切的,类似HH的项链~ code: #include <bits/stdc++.h> #define ll long long #define M 500003 #define ...

  7. 牛客NOIP提高组R1 C保护(主席树)

    题意 题目链接 Sol Orz lyq 我们可以把一支军队(u, v)拆分为两个(u, lca)和(v, lca) 考虑一个点x,什么时候军队对它有贡献,肯定是u或v在他的子树内,且lca在他的子树外 ...

  8. 牛课练习赛34 Flittle w and Discretization 主席树维护Mex

    ittle w and Discretization 主席树维护Mex. 每个右端点 r 维护出一棵 在[1, r ] 区间中 其他所有的 值离这个 r 最近的的位置是多少. 然后询问区间[L,R]的 ...

  9. 【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D

    目录 [并查集缩点+tarjan无向图求桥]Where are you @牛客练习赛32 D PROBLEM SOLUTION CODE [并查集缩点+tarjan无向图求桥]Where are yo ...

随机推荐

  1. 洛谷 P3592 [POI2015]MYJ

    题意 给定\(m\)个区间\([a_i,b_i]\)以及\(c_i\),对于一个含有\(n\)个元素的序列\(ans[]\),区间\(i\)对其的贡献为\(\min\{ans_i\}(i\in[a_i ...

  2. HDU 4352 XHXJ's LIS HDU(数位DP)

    HDU 4352 XHXJ's LIS HDU 题目大意 给你L到R区间,和一个数字K,然后让你求L到R区间之内满足最长上升子序列长度为K的数字有多少个 solution 简洁明了的题意总是让人无从下 ...

  3. BZOJ 1131 [POI2008] STA-Station 题解

    题目 The first stage of train system reform (that has been described in the problem Railways of the th ...

  4. P2585 三色二叉树 题解

    题目 一棵二叉树可以按照如下规则表示成一个由0.1.2组成的字符序列,我们称之为"二叉树序列S": \[S=\left\{ \begin{aligned} 0 &\ \ 表 ...

  5. Traffic Real Time Query System 圆方树+LCA

    题目描述 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, ...

  6. 发布.net core Web到CentOS7

    1.发布一个.net core(只安装了.Net Core运行时,而没有安装ASP.NET Core运行时,需要添加以下节点再发布).  <PublishWithAspNetCoreTarget ...

  7. UDP/TCP 流程与总结

    1 UDP流程 前序:可以借助网络调试助手工具进行使用 1 UDP 发送方 1 创建UDP套接字 2 准备目标(发送方) IP和端口 3 需要发送的数据内容 4 关闭套接字 from socket i ...

  8. 深入Vue-router最佳实践

    前言 最近再刷Vue周边生态的官方文档,因为之前的学习都是看视频配合着文档,但主要还是通过视频学习,所以很多知识点都没有了解,至从上次刷了Vuex的官方文档就体会到了通读文档的好处,学习一门技术最好的 ...

  9. JavaScript学习 Ⅳ

    八. 批量创建对象 使用工厂方法创建对象 function creatPerson(name, age, gender='男'){ var obj = new Object(); obj.name = ...

  10. kubernetes系列(十五) - 集群调度

    1. 集群调度简介 2. 调度过程 2.1 调度过程概览 2.2 Predicate(预选) 2.3 Priorities(优选) 3. 调度的亲和性 3.1 node亲和性 3.1.1 node亲和 ...