[论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering
[论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering
本文结构
- 解决问题
- 主要贡献
- 算法原理
- 参考文献
(1) 解决问题
已经有一些工作在使用学习到的节点表示来做社区发现,但是仅仅局限在得到节点表示之后使用聚类算法来得到社区划分,简单说就是节点表示和目标任务分离了,学习到的节点表示并不能很有效地应用于聚类算法(因为可能节点表示向量所在的低维空间中并不存在容易容易划分的簇,从而使用聚类算法也不能得到很好的社区划分结果)。
(2) 主要贡献
Contribution 1: 提出GEMSEC,一个基于序列的图表征模型,学习节点表征的同时进行节点的聚类。
Contribution 2: 引入平滑正则项来迫使具有高度重叠邻域的节点对有相似的节点表示。
(3) 算法原理
GEMSEC算法主要的框架还是遵循DeepWalk的算法框架,即随机游走生成语料库,再利用简单神经网络来训练节点表示向量。
- 对于随机游走部分,GEMSEC简单采用DeepWalk的一阶随机游走。
- 对于所使用的简单神经网络,原本DeepWalk采用的是以最大化窗口内节点共现概率为目标的Skip-Gram模型,而GEMSEC仅仅在Skip-Gram目标函数(窗口内节点的共现概率)的基础上加上了和聚类有关的目标函数,从而将表示向量学习目标和聚类目标联合在一起优化,得到更加适合聚类(簇的内聚程度高,簇间分明)的表示向量,在学习表示向量的同时也生成了节点的社区划分。
总的目标函数=Skip-Gram目标函数+聚类目标函数,如下所示:

上述目标函数中用到的符号解释如下:
f-the\ mapping\ function\ (from\ node\ to\ embedding\ vector)
f(v)-the\ embedding\ vector\ of node\ v
N_{S}(v)-the\ collection\ of\ windows\ containing\ v
C-the\ set\ of\ communities
u_{c}-the\ vector\ of\ cluster\ center
\gamma-the\ weight\ coefficient\ of\ the\ clustering\ cost
上述目标函数中,第一项(公式中的Embedding cost)为使用了Softmax的节点共现概率函数化简后的形式,主要作用是使得采样的序列中同一个窗口内的节点的表示向量具有相似的表示。第二项(公式中的Clustering cost)为聚类的目标函数(类似Kmeans),旨在最小化节点与最近的聚类中心的距离,即增加簇的内聚度,训练更适合聚类的表示向量。
此外论文中还引入了平滑正则化项(未在上述目标函数公式中给出),该项形式如下:

上述函数中用到的符号解释如下:
E_{S}-the\ edges\ within\ the\ windows
w(v,u)-the\ regularization\ weight\ of\ each\ pair\ (v,u)
\lambda-the\ regularization\ coefficient
窗口内存在边的节点对的正则化权重w(v,u)可由如下计算(采用网络中的相似度计算方式确定,如Jaccard系数,即两个节点共同邻居的比例越大,两个节点越相似):

引入该平滑正则化项的目的是使得具有高度重叠邻域的节点对有着更加相似的向量表示。 (该平滑正则化项也可以用于DeepWalk、Node2Vec等目标函数的设计)
因此最终Smooth GEMSEC算法的总的目标函数=共现概率目标+聚类目标+平滑正则化项。
(4) 参考文献
Rozemberczki B, Davies R, Sarkar R, et al. Gemsec: Graph embedding with self clustering[C]//Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining. 2019: 65-72.
[论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering的更多相关文章
- [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...
- 论文阅读 Real-Time Streaming Graph Embedding Through Local Actions 11
9 Real-Time Streaming Graph Embedding Through Local Actions 11 link:https://scholar.google.com.sg/sc ...
- [论文阅读笔记] Community aware random walk for network embedding
[论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...
- [论文阅读笔记] Are Meta-Paths Necessary, Revisiting Heterogeneous Graph Embeddings
[论文阅读笔记] Are Meta-Paths Necessary? Revisiting Heterogeneous Graph Embeddings 本文结构 解决问题 主要贡献 算法原理 参考文 ...
- [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...
- [论文阅读笔记] Structural Deep Network Embedding
[论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...
- [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion
[论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...
- [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...
- 论文阅读笔记(十八)【ITIP2019】:Dynamic Graph Co-Matching for Unsupervised Video-Based Person Re-Identification
论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① P ...
随机推荐
- Spring IoC 到底是什么
前言 「上一篇文章」我们对 Spring 有了初步的认识,而 Spring 全家桶中几乎所有组件都是依赖于 IoC 的. 刚开始听到 IoC,会觉得特别高大上,但其实掰开了很简单. 跟着我的脚步,一文 ...
- delphi DBgrid应用全书
在一个Dbgrid中显示多数据库 在数据库编程中,不必要也不可能将应用程序操作的所有数据库字段放入一个数据库文件中.正确的数据库结构应是:将数据库字段放入多个数据库文件,相关的数据库都包含一个唯 ...
- python中使用mock模块返回数据
mock是辅助单元测试的一个模块.它允许您用模拟对象替换您的系统的部分,并对它们已使用的方式进行断言. mock在python3中已经被集成到了unittest单元测试框架中,所以,可以直接使用. m ...
- 系统服务监控指标--load、CPU利用率、磁盘剩余空间、磁盘I/O、内存使用情况等
介绍 大型互联网企业的背后,依靠的是成千上万台服务器日夜不停的运转,以支撑其业务的运转.宕机对于互联网企业来说,代价是沉重的,轻则影响用户体验,重则直接影响交易,导致交易下跌,并且给企业声誉造成不可挽 ...
- axios post提交数据的三种请求方式
1.Content-Type: application/json import axios from 'axios' let data = {"code":"1234&q ...
- [LeetCode] 279. 完全平方数(DP)
###题目 给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12 输出: 3 解 ...
- [程序员代码面试指南]字符串问题-字符串匹配问题(DP)
问题描述 字符串str,模式串exp. 必须保证str中无'.'和'星号'字符,并且exp中'星号'不出现在首位,且无连续两个'星号'.PS星号是字符只是暂时没找到markdown的星号转义字符. ' ...
- Github上如何添加 LICENSE 文件?
什么是开源软件? 开源软件是所有人都可以修改和补充的软件,因为开源软件的 license 协议允许这样做. Git版本控制系统就是开源的软件. 实际上开源软件的一个重要组成部分就是添加 license ...
- mariadb 4
连接查询,视图,事物,索引,外键(第四章) 连接查询 --创建学生表 create table students ( id int unsigned not null auto_increment ...
- 首发!Alibaba内部:Spring源码培训课件笔记曝光!
本文包含的内容 Spring占有的市场 阅读源码的重要性 阅读源码困难度 课件笔记的主要内容 Spring占有的市场 先来简单说一下现在各个企业常用并与Spring相关的: ssh = spring ...