【eJOI2020】考试(dp & 树状数组优化)
Description
\(n\) 个正整数排成一列,每个位置 \(i\) 有一个初始值 \(A_i\) 以及目标值 \(B_i\)。
一次操作可以选定一个区间 \([l, r]\),并将区间内所有数赋值为 \(\max_{i\in[l, r]} A_i\)。
你可以进行任意次操作,每次操作基于上次操作的结果。
求结果若干次操作后,使得与操作后的值与目标值相同的位置数最大化。
Hint
\(1\le n\le 10^5, 1\le A_i, B_i\le 10^9\)。
原题数据过于奇妙于是就直接取最大值反正能做。官方那个三合一做法真的 /no
Solution
首先,我们不难求出对于每个 \(i\in[1, n]\),该位置可以向左侧取到目标值 \(B_i = A_j\) 的第一个位置 \(L_i = j(\le i)\) 或者不存在,同理对于右侧 \(R_i\) 我们也这么干。
为什么我们只取第一个位置呢?显然可能存在多个可取的位置,不过注意到我们对位置 \(i\) 向 \(j\) 进行一次取值操作之后,会对中间的这些值造成影响。我们希望成功的取值操作尽可能多,那么影响的范围自然是越少越好了。
观察到一个性质,对于一个 \(i\),如果 \(L_i\) (\(R_i\) 同理不再赘述)存在,说明 \(j\in[L_i +1, i]\) 这个区间的所有 \(A_j\) 的值都小于 \(A_{L_i}\)。那么一次操作下去,所有这个区间内的值都会失效,如果有像“从 \(A_j\) 取值到 \(k(<i)\)”这样的操作那必然不能同时与当前这个同时执行。
于是我们尝试大力将题目转化:有两排点,每排 \(n\) 个,对于第一排每个点 \(i\) 向第二排的第 \(L_i, R_i\) 个点分别连一条边。若选取一个第一排的点 \(i\),那么需要至少选中连接 \(i\) 的两条或一条边的一条边(没有边则不能选)。要求选中的边两两不相交(除端点外),求最多选取第三个第一排的点。
发现当 \(A_i\) 互不相同时,每个点最多连出去 \(1\) 条边,这就是个经典的 LIS 问题,不过稍加拓展就可以得到本题的正解。
还是令 \(f(i, j)\) 为处理到第一排前 \(i\) 个点,第二排涉及到的点编号最大的为 \(j\),可以选出第一排点个数的最大值。那么转移比较简单:
\]
不难发现把 \(i\) 滚掉之后实质上就是一个前缀 \(\max\),于是使用树状数组优化为 \(O(n\log n)\)。
Code
/*
* Author : _Wallace_
* Source : https://www.cnblogs.com/-Wallace-/
* Problem : eJOI2020 Exam
*/
#include <algorithm>
#include <cstdio>
#include <set>
#include <vector>
using namespace std;
const int N = 1e5 + 5;
int n;
int A[N], B[N];
int L[N], R[N];
int tr[N]; // 树状数组求前缀 max
inline void upd(int p, int v) {
for (; p <= n; p += p & -p) tr[p] = max(tr[p], v);
}
inline int get(int p) {
int v = 0;
for (; p; p -= p & -p) v = max(tr[p], v);
return v;
}
signed main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", A + i);
for (int i = 1; i <= n; i++) scanf("%d", B + i);
vector<pair<int, int> > tmp(n * 2);
set<int> rec({0, n + 1});
for (int i = 1; i <= n; i++) tmp[i - 1] = {A[i], i};
for (int i = 1; i <= n; i++) tmp[i + n - 1] = {B[i], -i};
sort(tmp.begin(), tmp.end(), greater<pair<int, int> >());
for (auto it : tmp) {
if (it.second < 0) {
int l = *rec.lower_bound(-it.second);
if (A[l] == it.first) R[-it.second] = l;
int r = *--rec.upper_bound(-it.second);
if (A[r] == it.first) L[-it.second] = r;
} else rec.insert(it.second);
} // 求 L & R
for (int i = 1; i <= n; i++) { // 同步更新
int l = get(L[i]), r = get(R[i]);
if (L[i]) upd(L[i], l + 1);
if (R[i]) upd(R[i], r + 1);
}
printf("%d\n", get(n));
return 0;
}
【eJOI2020】考试(dp & 树状数组优化)的更多相关文章
- Codeforces 909 C. Python Indentation (DP+树状数组优化)
题目链接:Python Indentation 题意: Python是没有大括号来标明语句块的,而是用严格的缩进来体现.现在有一种简化版的Python,只有两种语句: (1)'s'语句:Simple ...
- 2015南阳CCPC C - The Battle of Chibi DP树状数组优化
C - The Battle of Chibi Description Cao Cao made up a big army and was going to invade the whole Sou ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- FZU2236 第十四个目标 dp+树状数组优化
分析:这种题烂大街,n^2,然后数据结构优化下到nlogn,离散化 #include <cstdio> #include <cstring> #include <queu ...
- Codeforces 909C Python Indentation:树状数组优化dp
题目链接:http://codeforces.com/contest/909/problem/C 题意: Python是没有大括号来标明语句块的,而是用严格的缩进来体现. 现在有一种简化版的Pytho ...
- BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- HDU 6240 Server(2017 CCPC哈尔滨站 K题,01分数规划 + 树状数组优化DP)
题目链接 2017 CCPC Harbin Problem K 题意 给定若干物品,每个物品可以覆盖一个区间.现在要覆盖区间$[1, t]$. 求选出来的物品的$\frac{∑a_{i}}{∑b_ ...
- Codeforces 946G Almost Increasing Array (树状数组优化DP)
题目链接 Educational Codeforces Round 39 Problem G 题意 给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...
- Codeforces 629D Babaei and Birthday Cake(树状数组优化dp)
题意: 线段树做法 分析: 因为每次都是在当前位置的前缀区间查询最大值,所以可以直接用树状数组优化.比线段树快了12ms~ 代码: #include<cstdio> #include< ...
随机推荐
- 消失的两个数字(1-N缺两个数)
给定一个数组,包含从 1 到 N 所有的整数,但其中缺了两个数字.你能在 O(N) 时间内只用 O(1) 的空间找到它们吗? 以任意顺序返回这两个数字均可. 示例 1: 输入: [1]输出: [2,3 ...
- nginx状态监控统计
nginx是一款很优秀的web服务器软件,很多地方都有接触和使用到他,大部分的场景压力还没达到需要调优的地步,而调优的难点其实不在于调,而在于各项状态的监控,能够很快的找到资源在什么时候出现问题,调整 ...
- Python_用PyQt5 建 notepad 界面
用PyQt5建notepad界面 1 # -*-coding:utf-8 -*- 2 """ 3 简介:用PyQt5做一个对话框,有菜单(2个.有独立图标.快捷键).提示 ...
- CTF-Web-强网杯 2019-随便注
题目链接 题目链接-supersqli FUZZ测试 fuzz出,order by测出数据库查询列数2列,注释符号#,select|update|delete|drop|insert|where|被过 ...
- BUUCTF 不一样的flag writeup
感谢BUUCTF提供的学习平台 https://buuoj.cn 题目:不一样的flag 工具:x64dbg 这是一道内存的迷宫题,迷宫是402000处的字符串 根据经验,这应该(a行*b列)的字符, ...
- ctf-工具-binwalk
binwalk在玩杂项时是个不可缺的工具.1.最简单的,在玩隐写时,首先可以用它来找到其中的字符串例如:在铁人三项,东北赛区个人赛中,有一道题它直接给了一个文件,没有后缀,不知道是什么文件先binwa ...
- CorelDRAW 里面如何将文字调整成半透明的颜色
早在几年前,平面设计师在做设计时会遇到关于印刷的难题,那就是为了降低印刷成本,必须减少他们的颜色数量.随着印刷方法的进步,特别是数字出版物的兴起,我们生活在一个主要是通过屏幕观看图形的时代,一个可以显 ...
- Redis多线程原理详解
本篇文章为你解答一下问题: 0:redis单线程的实现流程是怎样的? 1:redis哪些地方用到了多线程,哪些地方是单线程? 2:redis多线程是怎么实现的? 3:redis多线程是怎么做到无锁的? ...
- 年轻人不讲武德,竟然重构出这么优雅后台 API 接口
Hello,早上好,我是楼下小黑哥~ 最近偶然间在看到 Spring 官方文档的时候,新学到一个注解 @ControllerAdvice,并且成功使用这个注解重构我们项目的对外 API 接口,去除繁琐 ...
- Java-Netty前菜-NIO
NIO NIO主要有三个核心部分组成: buffer缓冲区 Channel管道 Selector选择器 在NIO中并不是以流的方式来处理数据的,而是以buffer缓冲区和Channel管道配合使用来处 ...