Link

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int MAXN=1e6;
int T,n,m,f[MAXN+10],g[MAXN+10],inv[MAXN+10];
const int mod=1e9+7;
inline int add(int x,int y){return (x+y+mod)%mod;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
inline int mul_(int x,int y){return 1ll*x*y%(mod-1);}
bitset<MAXN+10>vis;
int p[MAXN+10],cnt,mu[MAXN+10],ans;
inline int qpow(int x,int y){
int res=1;
while(y){
if(y&1)res=mul(res,x);
x=mul(x,x);y>>=1;
}
return res;
}
void pretreatment(int G){
mu[1]=1;f[1]=1;inv[1]=1;g[0]=g[1]=1;vis[1]=1;
for(int i=2;i<=G;++i){
f[i]=f[i-1]+f[i-2];f[i]%=mod;
inv[i]=qpow(f[i],mod-2);g[i]=1;
if(!vis[i])p[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*p[j]<=G;++j){
vis[i*p[j]]=1;
if(i%p[j]==0)break;
mu[i*p[j]]=-mu[i];
}
}
//for(int i=1;i<=G;++i)mu[i]+=mu[i-1];
for(int i=1;i<=G;++i){
if(!mu[i])continue;
for(int j=i;j<=G;j+=i){
g[j]=1ll*g[j]*(mu[i]==1?f[j/i]:inv[j/i])%mod;
}
}
for(int i=2;i<=G;++i)g[i]=mul(g[i],g[i-1]);
}
int solve(int N,int M){
int res=1;
for(int l=1,r;l<=min(N,M);l=r+1){
r=min(N/(N/l),M/(M/l));
int PP=mul(g[r],qpow(g[l-1],mod-2));
res=mul(res,qpow(PP,mul_(N/l,M/l)));
}
return res;
}
signed main(){
//freopen("1.in","r",stdin);
//freopen("test.out","w",stdout);
pretreatment(1000000);
scanf("%lld",&T);
while(T--){
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
ans=solve(n,m);
printf("%lld\n",(ans+mod)%mod);
}
return 0;
}

菜鸡笔者推到枚举\(kd\)时没有想到,于是悲惨爆零)

注意函数的筛法,以及指数取余的时候可以套用欧拉定理。

【题解】[SDOI2017]数字表格的更多相关文章

  1. 题解-[SDOI2017]数字表格

    题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...

  2. [SDOI2017]数字表格 & [MtOI2019]幽灵乐团

    P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...

  3. BZOJ:4816: [Sdoi2017]数字表格

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status ...

  4. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  5. 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 666  Solved: 312 Description Do ...

  6. P3704 [SDOI2017]数字表格

    P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...

  7. [SDOI2017]数字表格 --- 套路反演

    [SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...

  8. P3704 [SDOI2017]数字表格 (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P3704 [题解] https://www.luogu.org/blog/cjyyb/solution-p3 ...

  9. 【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演

    题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生 ...

随机推荐

  1. LinuxIP配置方法

    一.双网卡双IP. eth0为电信,eth1为联通. # cd /etc/sysconfig/network-scripts/ # vi ifcfg-eth0 DEVICE=eth0 HWADDR=0 ...

  2. Spine学习九 - 冰冻效果

    想象这样一个效果,一个人被冰霜攻击命中,然后这个人整个就被冰冻了,那么spine动画要如何实现这个效果呢? 1.首先需要一个Spine动画,这个动画应该是相对静止的,因为人物已经被冰冻了,那么这个人儿 ...

  3. 【问题】Java和Scala混合编译下无法正常使用lombok的问题

    工作中有java和scala和混合编译的工程,最近遇到一个问题,就是工程中有依赖java bean的scala文件,编译过程中发现编译器无法找到Java bean 中 lombok生成的getter, ...

  4. 线上环境去除console

    npm i -D babel-plugin-transform-remove-console babel.config.js // 获取 VUE_APP_ENV 非 NODE_ENV,测试环境依然 c ...

  5. C008:输入显示日期

    代码: #include "stdafx.h" int _tmain(int argc, _TCHAR* argv[]) { int day,month,year; do{ pri ...

  6. nginx高可用

    15.1. 传统的高可用思路 tomcat的高可用的思路,是在tomcat集群前面加一层负载服务nginx.如下图 这种做法,解决了tomcat的高可用问题.但是引入了前面的负载机器的高可用问题(Ng ...

  7. Sunday算法解决字符串匹配问题

    概述 提起字符串匹配可能更多人会想到KMP算法,该算法时间复杂度为O(m+n),而且也是我们在学习数据结构过程中最早接触到的比较好的算法.但KMP算法需要在模式字符串有关联的情况下,也即模式字符串前后 ...

  8. node.js之koa安装

    默认安装了node 1.cmd中工作目录下输入npm init:一路回车即可: 2.还是在此目录下输入npm i koa:我这里是安装的淘宝镜像即是输入cpm i koa. 3.打开编辑器在文件目录下 ...

  9. Linux:安装php

    一.环境准备(lamp环境:linux+apache+php+mysql) 1.安装php之前,首先要检查一下相关lib库 rpm -qa  zlib libxml libjpeg freetype ...

  10. 吴恩达《深度学习》-课后测验-第一门课 (Neural Networks and Deep Learning)-Week 3 - Shallow Neural Networks(第三周测验 - 浅层神 经网络)

    Week 3 Quiz - Shallow Neural Networks(第三周测验 - 浅层神经网络) \1. Which of the following are true? (Check al ...